您现在的位置: 首页> 研究主题> 集总

集总

集总的相关文献在1959年到2022年内共计291篇,主要集中在石油、天然气工业、化学工业、化学 等领域,其中期刊论文110篇、会议论文1篇、专利文献72369篇;相关期刊52种,包括华东理工大学学报(社会科学版)、华东理工大学学报(自然科学版)、辽宁石油化工大学学报等; 相关会议1种,包括2007齐鲁研究生学术论坛——化学工程与技术分论坛等;集总的相关文献由620位作者贡献,包括翁惠新、王阔、欧阳福生等。

集总—发文量

期刊论文>

论文:110 占比:0.15%

会议论文>

论文:1 占比:0.00%

专利文献>

论文:72369 占比:99.85%

总计:72480篇

集总—发文趋势图

集总

-研究学者

  • 翁惠新
  • 王阔
  • 欧阳福生
  • 杨瑾屏
  • 江洪波
  • 杨朝合
  • 柳伟
  • 方向晨
  • 刘熠斌
  • 张红梅
  • 期刊论文
  • 会议论文
  • 专利文献

搜索

排序:

年份

    • 陈阳; 刘锦泽; 于兆臣; 王智峰; 欧阳福生
    • 摘要: 以实验室建立的重油催化裂化(RFCC)12集总动力学模型为基础,通过设置装置因数和回炼计算,建立了重油催化裂化工业反应器模型.编制了可用于求取装置因数和预测产物分布的12集总动力学模型的工业模拟软件.基于实验室模型获得的动力学参数及工业装置操作数据,利用RK4(Runge-Kutta)法和拟牛顿BFGS(Broyden-Fletcher-Goldforb-Shanno)优化算法求取了工业装置因数.经验证,产物收率预测值与实际值的相对误差几乎均在5%以内,说明重油催化裂化工业反应器模型和装置因数的可靠性.考察了反应温度和剂油比(催化剂与原油质量比)对产物收率的影响,结果表明产物分布趋势的预测符合催化裂化反应规律,说明所建模型外推性良好,为模型的进一步工业应用打下了良好基础.
    • 李圣淋; 李国庆; 王艳; 蔡楚轩
    • 摘要: Chevron模型是研究石油馏分窄集总加氢裂化反应动力学的基本模型,但其假设反应热恒定,即不管反应体系和反应条件如何,反应过程每消耗1 kg新氢,都将释放2.1×104 kJ反应热.这与实际反应不符.笔者在反应过程氢、碳元素质量守恒的基础上,基于热力学状态函数法,改进了Chevron模型,提出了用反应物和反应产物集总标准燃烧热严格计算反应热的方法,取代恒反应热假设;基于反应温度误差和产品分布误差同时最小的原则,用多目标遗传算法(NSGA-Ⅱ)拟合模型参数,较之基于反应温度和产品分布总误差最小的传统GA拟合方法,大大提高了模型参数的精度.某2.0 Mt/a蜡油加氢裂化装置反应器计算表明,新模型及NSGA-II参数拟合方法更能仿真实际操作,其产品分布预测精度比现有模型加G A拟合提高了14.0%.
    • 柳伟; 方向晨; 刘继华; 郭蓉; 宋永一
    • 摘要: 将柴油馏分中硫化物按照其加氢脱硫反应难易程度分为三个集总,建立了柴油深度加氢脱硫反应三集总一级动力学模型.运用建立的动力学模型对柴油馏分中不同类型硫化物的反应规律以及工业上几种不同类型柴油加氢脱硫催化剂的反应性能特点进行了分析.动力学模型拟合结果表明,在脱硫率为70%时,集总1已经完全脱除,生成油中剩余未转化硫化物全部为集总2和3硫化物,且随着反应深度的加深集总3的比例逐渐提高,脱硫率达到98%后,加氢精制油剩余硫化物80%以上为集总3硫化物,4,6位含空间位阻作用的二苯并噻吩(DBT)硫化物的脱除是深度脱硫反应过程的速率控制步骤.相比于另外两个集总硫化物,集总3的脱除反应提温敏感性较差,较高的压力和较低的空速下有利于这部分硫化物的脱除.运转评价结果也表明催化剂1相比于催化剂2和3在深度加氢脱硫反应过程受热力学平衡限制作用更加明显:以原料2为反应进料,在反应压力6.0 MPa、体积空速1.0 h-1条件下催化剂1加氢脱硫生成油硫含量随反应温度变化曲线在370°C下出现拐点.而在相同压力、体积空速1.5 h-1条件下,催化剂2和3上随着反应温度的升高,产品硫含量逐渐降低,在试验的温度范围内,未出现温度拐点.催化剂2和3表现出了更好的对集总3的脱除效率以及更好的提温敏感性,更适合工业装置上深度脱硫反应过程.
    • 汪伟; 王智峰; 欧阳福生; 李盾; 侯凯军; 阳斯拯
    • 摘要: 根据催化裂化反应机理和产物分布特点,建立了包含54条虚拟反应路径的重油催化裂化12集总反应网络.以Davison Circulating Riser(DCR)试验装置数据为基础,基于Python平台,将模型数学方程转化为程序语言,采用四阶Runge-Kutta法求解模型微分方程、BFGS法优化目标函数,求取了模型的动力学参数.采用小型试验数据验证模型动力学参数,结果表明主要产品产率的计算值与实验值之间的相对误差均小于5%.说明所建模型的动力学参数是可靠的,能较好地反映重油催化裂化的反应规律,可用于对实际生产过程进行模拟优化.
    • 熊献金
    • 摘要: 根据集总理论和催化重整的反应机理,基于工业连续重整装置,提出了一个包含34个集总组分、82个反应的连续重整反应动力学模型.该模型的所有通用于各套装置的装置因数是根据多套连续重整装置工业数据进行验证后而确定的.所选估算的通用装置因数,符合经典的双功能催化重整反应机理.随后又建立了连续重整径向反应器数学模型.通过连续重整工业装置的模拟计算对模型进行了验证,结果表明,该模型能较准确地预测重整产品各组分的产率.该模型可为连续重整工业装置的模拟和操作优化及产品组成预测提供重要依据.
    • 欧阳福生; 沈佳颖; 王永前; 徐祺鸿
    • 摘要: Based on catalytic hydrogenation mechanism and features of M and DSO processes in fluid catalytic cracking (FCC) gasoline production, heavy fractions of FCC gasoline was lumped into aromatic hydrocarbon, olefin, naphthene, isoparaffin and paraffin. The experimental microreactor was assumed as an isothermal reactor and 5-lumping models for M and DSO processes were established. Kinetic parameters of M and DSO processes were calculated by Runge-kutta method and genetic algorithm with MATLAB using experimental data from a small-scale tubular fixed bed reactor. Kinetic results indicate that the M-DSO process is better than the DSO-M process in FCC gasoline upgrading. Moreover, validation results show that the models established are reliable. Considering temperature variation in the axial direction of reactors, the model established provides good guidance for simulation and optimization of commercial M-DSO units.%根据石油催化加氢反应机理催化汽油加氢改质M、DSO反应段工艺特点,将催化重汽油馏分划分为芳烃,烯烃,环烷烃,异构烷烃,正构烷烃5个集总,将实验室微型反应器作等温处理,分别建立了M和DSO两个反应段的5集总动力学模型.以催化重汽油馏分为原料在小型管式固定床反应器中进行改质的实验数据为基础,基于MATLAB平台,采用龙格库塔法和遗传算法求取了M段和DSO段的动力学参数.从动力学角度上诠释了M-DSO工艺在催化汽油改质效果上优于 DSO-M 工艺.模型验证结果表明,所建立的模型是可靠的.在考虑反应器轴向温度变化的情况下,所建模型可为M-DSO工业装置的模拟优化提供良好指导.
    • 孙国权; 姚春雷; 全辉
    • 摘要: The kinetics of ultra-deep hydrodesulfuration(HDS)was investigated in a fixed-bed reactor with hydrofining catalysts. The influences of reaction temperature,hydrogen partial pressure and liquid hourly space velocity on HDS w ere studied respectively.By analyzing the desulfurization performances of sulfides in diesel,sulfides were divided into three types,and a three-lump HDS models was established.Apparent activation energy E,pre-frequency factor A and the grade value of hydrogen pressure at different temperatures were obtained.By assuming that apparent activation energies of three types of sulfides w ere constant,a three-lump kinetics model with first order was obtained by associating the pre-exponential factor of sulfides in diesel with density and boiling range.According to the numbers of distillates separated by boiling range,the relationship between pre-exponential factor and mean average boiling point was acquired.The results of the correlation coefficient(R2)and residual error of the equation indicate that the obtained kinetics model coincided well with the experiments,and the model is helpful for developing new ultra-deep hydrodesulfuration catalysts and processes.%采用固定床反应器,对加氢精制催化剂上的深度加氢脱硫(HDS)动力学进行研究,考察了反应温度、氢分压和空速对柴油脱硫效果的影响.根据柴油中各种硫化物的脱除行为,按被脱除的难易程度将柴油中的硫化物分为3类,构成三集总 HDS模型,获得不同温度下的表观活化能(E)、指前因子(A)和对氢分压的分级数值.假定3类硫化物的活化能不变,将其指前因子与柴油的密度和馏程相关联,建立3个指前因子与中平均沸点的关系曲线,结合按温度切割的柴油窄馏分个数,建立三集总一级反应动力学模型,对方程进行了相关系数(R2)和残差检验.结果表明,所得动力学模型与实验数据吻合良好,在实际应用中可为开发新型超深度 HDS催化剂及工艺提供理论指导.
    • 侯凯军; 欧阳福生; 高永福; 李荻; 王智峰; 阳斯拯
    • 摘要: 以重油为原料,采用多产丙烯催化裂化(FCC)平衡催化剂,在DCR实验装置上考察了重油多产丙烯的FCC反应规律.根据重油FCC反应机理,将原料划分成饱和烃、芳香烃、胶质/沥青质等3个集总,产物划分为干气、液化气(丙烯除外)、汽油、柴油、焦炭、丙烯等6个集总,构建多产丙烯反应网络,利用实验数据求取了27个反应的动力学参数,建立了适用于多产丙烯的重油FCC 9集总反应动力学模型.结果表明:反应动力学参数合理可靠,较好地反映了重油FCC的反应规律;所建模型具有良好的预测性,产品收率计算值与实验值的相对误差在土5.00%以内.%With heavy oil as feedstock,fluid catalytic cracking (FCC) equilibrium catalyst for maximizing propylene yield was adopted,and the FCC reaction rules of heavy oil for maximizing propylene yield were investigated in a DCR pilot plant.Based on the reaction mechanism of heavy oil FCC,the feedstock was classified into three lumps,including saturated hydrocarbon,aromatic hydrocarbon and resin/asphaltene,the products were divided into six lumps,including dry gas,LPG (except propylene),gasoline,diesel,coke and propylene etc.The reaction networks for maximizing propylene yield were built.The reaction kinetic parameters of twentyseven reactions were determined by the experimental data,and the nine lumps reaction kinetic model of heavy oil FCC for maximizing propylene yield was established.The results showed that the reaction kinetic parameter was reasonable and reliable,and the FCC reaction rules of heavy oil could be preferably reflected;the estabilished model had a good predictability,the relative error of product yield was within ±5.00% between the calculated value and experimental value.
    • 单贤根; 李克健; 章序文; 王洪学; 曹雪萍; 江洪波; 翁惠新
    • 摘要: 为考察神华上湾煤的直接液化性能及反应动力学,以加氢蒽油-洗油混合油作为溶剂、负载型FeOOH作为催化剂,在0.01 t·d?1煤直接液化连续实验装置上考察了不同反应温度(435~465°C)、不同停留时间(7~110 min)下液化产品组成的演变规律.研究发现,随着煤的裂解及加氢反应的进行,煤及沥青类物质(PAA)收率不断减小,重质液化产物逐步向轻质液化产物转化.当反应温度为455°C、停留时间为90 min时,煤转化率为90.41%(质量分数),油收率为61.28%(质量分数).随着反应条件进一步苛刻,油收率下降.基于上湾煤直接液化反应特性及其产物收率变化规律建立了11集总煤直接液化反应动力学候选模型,以BFGS优化算法对实验数据搜索、选优,确定了动力学模型参数.检验结果表明所建立的动力学模型可用于恒温阶段直接液化行为的模拟计算.%To study the performance and reaction kinetics of direct coal liquefaction for Shenhua Shangwan coal bituminous coal, experiments were carried out in a 0.01 t·d?1 continuous tubular facility using the hydrogenated anthracene and wash oil as solvent and FeOOH as catalyst in the range of residence time 7—110 min, reaction temperature 435—465°C. The results showed that, as the coal pyrolysis and a series of hydrogenation proceed, coal and PAA yields continue to decrease, heavy liquefied product gradually transformed to light liquefied product. When the reaction temperature is 455°C, residence time of 90 min, the coal conversion reached 90.41% (mass) and oil yield 61.28% (mass) respectively, and with the reaction conditions were further harsh, the oil yield will decrease. Based on the reaction characteristics of Shenhua Shangwan coal and its data from experiments, 11 lumps reaction kinetics model was build and BFGS optimization algorithm was adopted to get reaction kinetics parameters. The kinetics model better predicted the reaction behavior of direct coal liquefaction of Shangwan coal in isothermal stage.
  • 查看更多

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号