摘要:针对系统噪声和量测噪声均发生变化时,现有自适应卡尔曼滤波容易发散导致SINS/GNSS导航精度下降的问题,提出了一种基于Allan方差的改进自适应滤波SINS/GNSS导航算法。该方法在对自适应滤波进行改进的基础上,结合Allan方差估计法计算量测噪声协方差阵,克服了自适应滤波中噪声参数耦合以及高维度系统出现奇异性导致滤波发散问题,并利用残差χ2故障检测法对系统状态进行判断,对遗忘因子进行动态调整,对噪声特性跟踪效果更快速,相比其他改进方法简单易实现。仿真结果表明,与卡尔曼滤波,Sage-Husa自适应滤波相比,所提出的算法对噪声有较好的估计效果,且导航精度更高,滤波稳定性更好,速度均方误差平均可比传统Kalman滤波提高49.06%,较Sage-Husa自适应滤波提高27.19%;位置均方误差平均可比传统Kalman滤波提高41.12%,较Sage-Husa自适应滤波提高19.79%。