您现在的位置: 首页> 研究主题> 合成生物学

合成生物学

合成生物学的相关文献在2004年到2022年内共计871篇,主要集中在生物工程学(生物技术)、分子生物学、微生物学 等领域,其中期刊论文840篇、会议论文19篇、专利文献520646篇;相关期刊272种,包括生物产业技术、生物工程学报、生物加工过程等; 相关会议13种,包括2016首届中国中药资源大会暨CSNR中药及天然药物资源研究专业委员会第十二届学术年会、中国医学科学院/北京协和医学院医学信息研究所/图书馆2014年学术年会、2012年第五届全国微生物遗传学学术研讨会等;合成生物学的相关文献由1724位作者贡献,包括元英进、李春、王颖等。

合成生物学—发文量

期刊论文>

论文:840 占比:0.16%

会议论文>

论文:19 占比:0.00%

专利文献>

论文:520646 占比:99.84%

总计:521505篇

合成生物学—发文趋势图

合成生物学

-研究学者

  • 元英进
  • 李春
  • 王颖
  • 堵国成
  • 李炳志
  • 刘龙
  • 周雍进
  • 王钦宏
  • 陈国强
  • 陈士林
  • 期刊论文
  • 会议论文
  • 专利文献

搜索

排序:

年份

    • 摘要: 1.《合成生物学》(双月刊)是由化学工业出版社、中国生物工程学会及国投生物科技投资有限公司共同主办,化学工业出版社出版的我国目前唯一专注于合成生物学领域的中文科技期刊,《合成生物学》的前身是中国生物工程学会会刊《生物产业技术》,该刊自2020年第1期起更名为《合成生物学》,并开始立卷。
    • 冯晴晴; 张天鲛; 赵潇; 聂广军
    • 摘要: 近年来,纳米材料因独特的粒径效应、比表面积大、表面易修饰等优点被广泛应用于生物学研究领域。作为生物学中的重要新兴学科,合成生物学与纳米生物学的交叉研究是科学发展的必然结果,推动产生了一个全新的研究领域——合成纳米生物学:一方面,利用合成生物学的技术获取具有特殊生物功能的生物源纳米材料,形成以生物技术驱动的纳米材料合成理论;另一方面,利用纳米材料对生物体进行功能强化或者生命活动模拟,拓展合成生物学的工程化设计构建理念。本文根据本领域的最新进展,将合成纳米生物学分为基于基因工程化改造生物源纳米材料的“仿生命体”研究、基于纳米材料功能强化的杂合生物系统的“半生命体”研究和基于纳米材料模拟生命活动的“类生命体”研究三个细分领域。在此基础上,重点介绍了仿生细胞膜纳米颗粒、外泌体、细菌外膜囊泡、病毒样颗粒和细菌生物被膜等生物源纳米材料的改造及功能研究,以及纳米人工杂合细菌和细胞、人工光合系统的构建与应用。同时也介绍了纳米材料元件组装的纳米类酶、人工抗原递呈细胞、运动纳米机器人、DNA纳米机器人等仿生人工合成生物的最新研究进展。最后展望了纳米技术与合成生物学交叉领域的发展前景,分析了合成纳米生物学在肿瘤治疗、环境修复、能源工程等方面的应用潜力;剖析了当前“活细胞疗法”的优势与临床转化的局限性;对智能化药物输运平台的未来发展空间进行了展望。
    • 刘小玲; 雷蓉
    • 摘要: 合成生物学近年来成为学界研究热点,以药物研发领域为例,2010年至今全球发表的合成生物学相关文献呈逐年递增趋势。从2015年开始,中国合成生物学论文发表数基本排名第二,位于美国之后。从资本市场表现来看,合成生物行业正在走向爆发期,目前投资者最看好的是治疗和药品的生物合成技术应用。展望未来,我国合成生物学发展需要关注三个问题:一是人工智能与生物学融合;二是重点建设多种合成生物学工程技术平台,推动合成生物学技术成果转化的价值链建设;三是合成生物技术应用伴随的伦理风险。
    • 施茜; 吴园园; 杨洋
    • 摘要: 合成生物学突破了经典生物学“格物致知”的研究范式,开启了“建物致知”“建物致用”的研究时代。合成生物学是以系统生物学为基础,结合工程学设计,运用现代生物学技术方法,通过构建新的生物体系以揭示生命规律和开发颠覆性技术的交叉学科。以DNA为主要建筑材料进行纳米尺度结构自组装的DNA纳米技术,具有高度可设计性、精确可寻址性、生物亲和性、模块化组装等独特优势,已经成为合成生物学重要的支持技术。本文介绍了利用DNA纳米结构实现核酸、蛋白质、磷脂等生物大分子的有序装配;构建仿生细胞元件(例如核孔、人工膜通道、网格蛋白),生物过程(例如膜融合、脂质转移、成管过程)和生化体系(例如RNA挤出纳米工厂、体外病毒衣壳蛋白合成和凝血系统);及其在药物递送、肿瘤治疗等领域的应用。此外,未来的研究有望通过DNA纳米结构来更好地合成、模拟和调节天然生物体系。例如,如何一定程度恢复和利用DNA纳米结构携载遗传信息的能力;如何提高结构设计复杂性的同时,兼顾人工体系的简单性和生产的高效性;如何扩大生产规模,降低成本;如何在细胞中生产结构并组装。同时,临床应用层面仍有许多亟待解决的问题,比如增加药物的搭载效率,增强结构的靶向性,维持机体中结构稳定性,以及通过修饰进行免疫治疗。DNA纳米技术在合成生物学具有广泛的应用前景,将有助于认识生命本质、模拟生命过程、建立人工体系、开发改变未来的技术。
    • 张亭; 冷梦甜; 金帆; 袁海
    • 摘要: 合成生物学研究中,海量的工程化试错实验远远超出传统的劳动密集型研究范式的能力范畴,故建立一个可以实现生命体工程化大批量合成的合成生物学研究平台迫在眉睫。然而目前国内外已建成的工程化平台只能基于少数孤立设备或功能岛实现部分流程,不能满足合成生物学全生命周期的研究需求。基于此背景,在国家、省市相关部门的大力支持下,由中国科学院深圳先进技术研究院牵头建设的“合成生物研究重大科技基础设施”,目前已完成全部立项程序,进入全面实施建设阶段,预计于2023年开展试运营和验收工作。本文将从建设背景、过程、内容、目标和特色等方面对合成生物研究重大科技基础设施进行介绍。设施工程一期将重点搭建“设计学习”、“合成测试”和“用户检测”三大平台,二期拟建设医学转化平台。合成生物大设施主要围绕自动化合成生物技术,以合成生物学基础研究为理论基础,把自动化工业发展过程中的智能制造、智能工厂理念引入到合成生物学研究中,实现生命体工程化大批量合成。通过建立基于信息管理系统的智能生产单元,快速、低成本、多循环地完成“设计-构建-测试-学习”的闭环,实现理性可预测的设计合成,达成合成生命体的远程定制、异地设计和规模经济生产等目标。同时将信息技术与生物技术交叉融合,发展出适用于自动化、高通量设备平台的标准化实验方法、算法和流程,以期推动合成生物研究过程和工作流程的标准化,进而推动我国合成生物研究水平的提升,成为行业标杆,领跑国际。此外,合成生物大设施还将催动基础研究的原创突破及学科之间的交叉融合,助力生命科学研究实现跨越式发展。
    • 任师超; 孙秋艳; 冯旭东; 李春
    • 摘要: 五环三萜皂苷类化合物具有丰富的药理、生理活性,广泛应用于医药、功能食品、保健品、化妆品等领域。目前五环三萜皂苷类化合物的主要获取方式是植物提取,随着合成生物学的发展,利用微生物细胞工厂合成植物天然产物逐渐成为研究热点,它具有生产周期短、工艺简单、环境友好、条件温和等优势,是未来的发展方向。本文结合五环三萜皂苷类化合物的来源及其天然合成途径,综述了典型五环三萜皂苷类化合物的分类、功能活性、结构特点及目前利用微生物细胞工厂合成五环三萜皂苷类化合物的研究现状;分析了部分五环三萜皂苷类化合物合成途径当中的未解析的关键修饰位点及关键酶,并结合已报道的体内、体外研究,对部分未知途径当中催化母核形成苷元的P450酶以及对苷元进行糖基化修饰的糖基转移酶进行了合理预测;结合当前研究现状分析、总结、归纳了利用微生物细胞工厂合成五环三萜皂苷类化合物存在的主要瓶颈,讨论了现阶段工业化生产现状及利用生物合成进行工业化生产所面临的挑战,为高效合成五环三萜皂苷类天然产物的微生物细胞工厂构建提供了理论支持和新思路。
    • 郑涵奇; 吴晴; 李洪军; 顾臻
    • 摘要: 合成生物学与纳米生物学的交叉融合业已成为促进生物技术与生物医药领域发展的重要方向之一。利用合成生物学技术可以帮助生物源性纳米材料创造特殊的结构与功能,驱动纳米生物学的发展。纳米技术的应用则可助力基因线路递送,提升基于合成生物学的生产效率;参与介导基因调控,拓展合成生物学技术的应用场景。合成生物学和纳米生物学的融合可以构建出纳米级功能模块和纳米人工杂合系统,增强改造后体系的功能。本文将着重介绍近期合成生物学和纳米生物学交叉融合的相关研究进展,从纳米技术为合成生物学的发展赋能、合成生物学成为助力纳米技术应用的新引擎以及合成生物学和纳米生物学融合发展这三个角度,着重阐述该领域近期的重点工作,剖析并展望相关技术在基因编辑、药物递送以及医学成像等生物医药领域的应用和前景。未来,合成生物学和纳米生物学的交叉融合可能朝着模块化、标准化、仿生化、功能集成化和智能化的方向进一步发展,为生物医药领域带来新的突破。
    • 褚亚东; 赵宗保
    • 摘要: 现代生物技术、合成生物学和化学生物学研究中经常需要处理大量样本,对通量、精准度和时效性有很高要求。手动液体分装、转移和分发等操作不仅给科研人员带来很大工作负荷,还是导致实验误差和效率低下的重要原因。搭建以移液工作站为核心的小型集成化自动移液工作站系统,整合必要的外围设备,并通过软件和人机交互界面协调各个设备运行,可用于完成大量耗费人力的工作,提高工作效率和科研数据质量。本文结合研究团队所搭建的自动移液工作站系统,介绍了集成化移液工作站系统的主要组成,分享其在菌株及培养基评价、酶的定向进化筛选、自动诱导表达及粗酶液制备、酶联免疫吸附筛选、高通量质粒提取等方面的应用,并对集成化移液工作站系统的不足和购置及使用中的注意事项做了简要说明。预计集成化移液工作站系统将在国内高校和科研院所得到越来越普遍的应用,但还需要加大研发投入,从硬件、软件、人才、多学科交叉等多方面入手,共同推动国产实验室自动化设备进步。希望能为科研人员今后设计和添置类似的集成化移液工作站系统提供参考。
    • 武伟红; 李炜; 张先恩; 崔宗强
    • 摘要: 合成生物学的迅速发展为分子荧光标记与生物成像技术提供了新的机遇。基于合成生物学原理,可以建立材料生物合成新方法,开发性能优异的荧光纳米材料和探针,发展新的荧光成像技术。合成生物学应用于生物荧光成像,多涉及荧光材料与探针的设计合成、对生物靶标分子进行定点改造和修饰、荧光探针和靶标分子的可控时空耦合等以实现生物分子的精准特异性标记。这些荧光纳米材料和生物分子标记技术可应用于细胞内分子的荧光标记、成像和动态示踪,可视化解析相关的关键分子事件,从而深入揭示细胞内分子运动机制和病原致病机理等。本文主要综述了近年来合成生物学技术在生物荧光成像方面的应用,包括利用合成生物学技术合成量子点等荧光纳米材料与探针、对蛋白质和核酸分子的精准标记及其用于病毒荧光成像和示踪。最后,也对该领域面临的问题如荧光杂合生物材料可控合成、分子原位多重标记等进行了探讨和展望。合成生物学与荧光成像技术的交叉融合,将推动荧光成像技术发展和进步,并拓展合成生物学的研究领域。
    • 胥欣欣; 匡华
    • 摘要: 在细胞生物学中,受体是指在细胞表面或细胞内任何能够与激素、药物、信号分子等配体结合,从而引起细胞功能变化的生物大分子。随着生物学的快速发展,各种天然的、非天然的化合物在细胞中的识别、转运等信号通路及分子作用机制已被逐渐解析。酶、离子通道、转运蛋白等生物靶标都可以归类为广义上的受体。类似于抗体-抗原,受体-配体反应同样具有高亲和力、高特异性和高饱和,在食品安全快速检测领域有一定的发展潜力。受体蛋白的定向进化设计、潜在受体的开发利用以及多学科技术的交叉互融是受体生物传感分析方法发展的巨大推动力。本文简单介绍了受体的分类以及受体-配体的关系,概述了合成生物学中不同底盘生物对受体蛋白量产化的偏好性,回顾了基于受体蛋白的筛查分析方法在食品安全检测相关领域的研究进展,如抗生素残留、农药残留、非法使用添加剂、生物毒素及生物性污染等。最后,探讨了受体结合测定法的优缺点,分析了目前基于受体的分析方法所面临的瓶颈问题和可能的解决方式,展望了合成受体在食品安全检测应用领域中的发展方向。
  • 查看更多

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号