您现在的位置: 首页> 研究主题> 程序升温还原

程序升温还原

程序升温还原的相关文献在1989年到2022年内共计142篇,主要集中在化学、化学工业、石油、天然气工业 等领域,其中期刊论文118篇、会议论文15篇、专利文献124800篇;相关期刊56种,包括科技信息、石油化工、石油学报(石油加工)等; 相关会议8种,包括2010年第九届中国国际纳米科技(西安)研讨会、第七届全国催化剂制备科学与技术研讨会、第十届全国青年分析测试学术报告会等;程序升温还原的相关文献由471位作者贡献,包括孙潇磊、宋喜军、张喜文等。

程序升温还原—发文量

期刊论文>

论文:118 占比:0.09%

会议论文>

论文:15 占比:0.01%

专利文献>

论文:124800 占比:99.89%

总计:124933篇

程序升温还原—发文趋势图

程序升温还原

-研究学者

  • 孙潇磊
  • 宋喜军
  • 张喜文
  • 张海娟
  • 李江红
  • 王振宇
  • 徐三魁
  • 梁丽珍
  • 王向宇
  • 刘晓雷
  • 期刊论文
  • 会议论文
  • 专利文献

搜索

排序:

年份

    • 刘雅杰; 张文月; 边文璐; 康荷菲; 冯军鹏
    • 摘要: 通过机械球磨和固相焙烧的方法合成了组成不同的纳米铜铝尖晶石材料,采用X射线粉末衍射、高分辨透射电镜和程序升温还原技术(H_(2)-TPR)对其进行了表征,结果发现:基于H_(2)-TPR技术能够表征识别Cu-Al尖晶石固溶体与计量CuAl_(2)O_(4)尖晶石,并可得出合成样品中Cu-Al尖晶石晶相的分子式。H_(2)-TPR分析条件的研究表明:称样质量、气体流速、升温速率和热导电流等对还原峰温度和强度有明显的影响,但样品中不同铜物种的相对含量保持基本不变,证明了基于H_(2)-TPR技术表征识别Cu-Al尖晶石的可靠性和合理性。对一定组成的Cu-Al尖晶石样品,适宜的H_(2)-TPR分析条件应综合考虑称样质量、气体流速、升温速率和热导电流。
    • 李西良; 俞威; 刘兵; 唐浩东; 李瑛; 刘化章; 韩文锋
    • 摘要: 介绍了过渡金属磷化物优异的加氢脱硫、加氢脱氮活性和稳定性,这已成为加氢领域的研究热点,有可能取代部分贵金属而成为新一代加氢处理催化剂.叙述了过渡金属磷化物的性质、结构、制备方法,在所有的过渡金属磷化物中,磷化镍活性最高.并总结了不同P/Ni配比、载体对磷化镍活性的影响,以及磷化镍在加氢脱氯方面的研究进展.认为金属磷酸盐的还原是传统的制备磷化物的方法,但过程涉及高温、成本高,不利于工业化大规模生产,改进磷化物的还原过程、降低能耗,成为研究的热点.
    • 郭长友; 沈智奇; 王少军; 凌凤香; 张会成
    • 摘要: 利用程序升温还原和TEM等手段研究了载体表面元素修饰对MoS2的形态的影响规律及修饰元素对金属-载体相互作用的影响,分析了修饰元素对MoS2活性组分的影响机理.实验结果表明,元素修饰减少了MoS2片晶的长度,增加MoS2的分散性;修饰元素对低温还原峰的出峰温度和峰强度影响较小;B和P为非金属元素,与钼之间存在强相互作用,抑制了钼原子在硫化过程中的迁移,降低了高温还原峰的强度;Sn和Zr为金属元素,原子半径大,在氧化铝表面对钼原子的迁移路径起到阻碍作用,对高温还原峰的出峰温度和峰强度影响较小.%Effect laws of support surface modification with elements on the morphology of MoS2 and effects of modifying elements on metal-support interaction were investigated by means such as TPR technique and TEM,and the effect mechanisms of the modifying elements on the MoS2active component were analyzed. The experimental results showed that modification with elements allowed for decrease in length of MoS2lamellae and increase in dispersity of MoS2. Moreover,the modifying elements had little effect on the appearance temperature and intensity of low-temperature reduction peaks. B and P,which are non-metal elements,exhibited strong interaction with Mo,thus inhibiting the migration of Mo atoms in the sulfidation process and decreasing the intensity of high-temperature reduction peaks. In addition,Sn and Zr,which are metal elements with large atomic radiuses,played a role of barrier in the migration path of Mo on alumina surface,but had little effect on the appearance temperature and intensity of high-temperature reduction peaks.
    • 王岩玲; 陈高礼; 赫占军; 王俊恩
    • 摘要: 本文对金属磷化物的制备方法及催化活性进行了综述.金属磷化物常采用金属化合物和磷酸盐在氢气中还原进行制备,但这种方法的缺点是还原温度太高.磷化氢还原,亚磷酸盐与次磷酸盐以及磷酸盐的等离子体还原都可在低温下进行,制备出的金属磷化物颗粒半径小且有较高的催化活性.金属磷化物具有优异的加氢脱硫(HDS)、加氢脱氮(HDN)活性和稳定性成为催化材料方面研究的热点.另外,贵金属和双金属磷化物催化剂在加氢反应中也表现出了较高的活性和选择性.
    • Shirish S. Punde; Bruce J. Tatarchuk
    • 摘要: 开发室温CO氧化催化剂的主要挑战是CO自中毒和慢的表面动力学,同时湿气的存在也可导致催化剂失活.本文开发了高活性CeO2促进的Pt基催化剂4%Pt-12%CeO2/SiO2,用于室温湿气(湿度10%?90%,25°C)中CO氧化反应,在低CO浓度(2500 ppm)时,CO转化率高于99%.优化了催化剂制备变量,如Pt和CeO2负载量、CeO2沉积方法、CeO2和Pt前驱体的干燥和焙烧条件.采用CO/H2化学吸附、O2-H2滴定、X射线衍射和BET比表面积测定表征了催化剂的表面特性,并将其与催化剂活性相关联.结果表明,CeO2沉积方法对催化剂活性影响显著,当用浸渍法沉积CeO2时,所得催化剂的反应速率(5.77μmol/g/s)比用沉积沉淀法(1.96μmol g?1 s?1)或CeO2嫁接法(1.31μmol g?1 s?1)制得催化剂的高3倍.O2-H2滴定结果表明,当用浸渍法沉积CeO2时,CeO2和Pt的紧密结合导致了催化剂的高活性.催化剂载体的选择也非常重要,硅胶负载的催化剂活性(5.77μmol g?1 s?1)是氧化铝负载的(1.05μmol g?1 s?1)5倍.当反应受内扩散控制时,催化剂载体的粒径和孔结构影响非常大.另外,CeO2和Pt前驱体的干燥和焙烧条件对催化剂活性的影响至关重要.当Pt和CeO2含量分别大于2.5和15 wt%时,所得催化剂在室温条件下活性高(TOF>0.02 s?1),稳定性好(反应15 h,CO转化率≥99%).%CO self-poisoning and slow surface kinetics pose major challenges to a CO oxidation catalyst that should work at ambient temperature. Furthermore, the presence of moisture would cause pas-sivation of the catalyst. A highly active ceria promoted Pt catalyst (4%Pt-12%CeO2/SiO2; conversion ≥ 99% at low ( 2500 ppm) CO concentrations was developed for CO oxida-tion at ambient temperature in humid air. Catalyst preparation variables such as Pt and CeO2 load-ing, ceria deposition method, drying and calcination conditions for the ceria and Pt precursors were optimized experimentally. The activity was correlated with surface properties using CO/H2 chemi-sorption, O2-H2 titration, X-ray diffraction and BET surface area analysis. The method of CeO2 depo-sition had a significant impact on the catalytic activity. CeO2 deposition by impregnation resulted in a catalyst that was three times more active than that prepared by deposition precipitation or CeO2 grafting. O2-H2 titration results revealed that the close association of ceria and Pt in the case of CeO2 deposition by impregnation resulted in higher activity. The catalyst support used was also crucial as a silica supported catalyst was five times more active than an alumina supported catalyst. The parti-cle size and pore structure of the catalyst support were also crucial as the reaction was diffusion controlled. The drying and calcination conditions of the ceria and Pt precursors also played a crucial role in determining the catalytic activity. The Pt-CeO2/SiO2 catalysts with Pt > 2.5 wt% and CeO2 > 15 wt% were highly active (TOF > 0.02 s–1) and stable (conversion ≥ 99% after 15 h) at ambient conditions.
    • 王超; 朱对虎; 王伟
    • 摘要: MoP hydrodesulfurization ( HDS ) catalysts were prepared by coprecipitation method, the precursors containing ammonium molybdate and ammonium phosphate were directly converted to the active phosphide phase in the temperature-programmed reduction method ( TPR). The HDS performances of the prepared catalysts were studied using a model fuel containing 0. 8wt% dibenzothiophene in decalin, and the morphologies of the catalysts were characterized by XRD. Experiments show that MoP prepared by TPR method catalytic performances catalyst performances were higher in the hydrodesulfurization ( HDS ) . XRD characterization results showed that the preparation of the MoP catalyst and standard card ( PDF 24-0771 ) had the characteristics of perfectly diffraction peak.%采用共沉淀法将钼酸铵和磷酸氢二铵盐的前驱体,通过程序升温还原法( TPR)制备了MoP加氢脱硫( HDS)催化剂。以质量分数为0.8%的二苯并噻吩/十氢萘溶液为模型化合物,考察了催化剂的HDS反应性能,并用XRD对催化剂晶相进行了表征。实验证明, TPR还原法制备的MoP催化剂具有较高的加氢脱硫活性。 XRD表征结果表明,制备的MoP催化剂与标准卡片(PDF 24-0771)具有完全吻合的特征衍射峰。
    • 黄志钰; 李英明; 潘延波; 李莎莎; 杨伯伦
    • 摘要: Reactors with different specifications were used to prepare TiO2-Al2O3 composite supports by a sol-gel method (sol-gel). The scale-up process was followed the criterion of identical stirring power per unit volume. Tube furnaces with different sizes were used to prepare Ni2P/TiO2-Al2O3 catalysts by a temperature-programmed reduction (TPR) method in accordance with the scale-up criterion of identical reducing gas flow rate. The hydrodesulfurization performance of the catalysts was examined using a continuous fixed-bed reactor to investigate the “scale-up effect” in gelation and TPR processes (two key processes in catalyst preparation). The results show that the physical properties of the supports prepared in large scale is close to that prepared in small scale. Hydrodesulfurization at 603K, 2.5MPa, WHSV 2 h−1 and hydrogen/oil volume ratio of 500 for 90 h shows that the catalysts prepared in large scale achieves a conversion rate of 99.4%. The sulfur content in the model oil was reduced to 6 ppm, which was the same as the lab-scale test results. These results show that the preparation processes of the support and the catalyst are reliable and repeatable, and the scale-up of the catalyst is possible.%按照单位体积搅拌功率恒等的放大准则,采用不同规格的反应釜以溶胶凝胶法(sol-gel)制备TiO 2-Al 2 O 3复合载体;依据还原气体线速度恒等的放大准则,在不同规格管式炉中以程序升温还原法(TPR)制备Ni 2 P/TiO 2-Al 2 O 3催化剂,并在连续固定床反应器中考察催化剂的加氢脱硫性能,以研究凝胶、TPR这两个催化剂制备关键过程的“放大效应”。结果表明,放大制备的载体物化性质与小试结果相当,放大制备的催化剂在温度603 K、压力2.5 MPa、质量空速2 h−1、氢油体积比500的条件下对含硫量为0.1%(wt)的二苯并噻吩(DBT)/环己烷溶液进行90 h的加氢脱硫反应,转化率达到99.4%,模型油品中硫含量降至6 ppm,其结果也与小试相同,表明上述载体以及催化剂制备工艺可靠、重复性好,有望实现规模化制备。
    • 袁烨; 王志苗; 安华良; 薛伟; 王延吉
    • 摘要: 以碳纳米管(CNTs)为模板,采用液相沉积-水热法制备了管状纳米氧化铈(CeO2-NT).利用X射线衍射、透射电镜和N2等温吸附-脱附技术对其结构进行了表征,所得CeO2-NT外径~25 nm,长度大于300 nm,管壁由粒径4–9 nm的CeO2晶粒组成,比表面积为108.8 m2/g.以其为载体制备了Pd-O/CeO2-NT催化剂,程序升温还原结果发现,该催化剂表面氧在低温下即可被还原,具有较高的活性.将Pd-O/CeO2-NT用于催化苯酚氧化羰基化反应,催化剂活性和碳酸二苯酯(DPC)选择性均高于零维CeO2负载的Pd-O/CeO2-P催化剂.在优化的条件下,苯酚转化率为67.7%, DPC选择性为93.3%.但该催化剂再次使用时活性下降明显,这是由于Pd-O/CeO2-NT的管状结构在反应过程中被破坏,并且活性组分Pd流失所致.
  • 查看更多

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号