您现在的位置: 首页> 研究主题> 煤燃烧

煤燃烧

煤燃烧的相关文献在1974年到2022年内共计1034篇,主要集中在化学工业、能源与动力工程、废物处理与综合利用 等领域,其中期刊论文584篇、会议论文145篇、专利文献124629篇;相关期刊232种,包括洁净煤技术、煤炭学报、燃烧科学与技术等; 相关会议49种,包括中国工程热物理学会2014年年会、2013年中国工程热物理学会燃烧学学术年会、2012年中国工程热物理学会燃烧学学术年会等;煤燃烧的相关文献由2041位作者贡献,包括郑楚光、徐明厚、张军营等。

煤燃烧—发文量

期刊论文>

论文:584 占比:0.47%

会议论文>

论文:145 占比:0.12%

专利文献>

论文:124629 占比:99.42%

总计:125358篇

煤燃烧—发文趋势图

煤燃烧

-研究学者

  • 郑楚光
  • 徐明厚
  • 张军营
  • 岑可法
  • 赵永椿
  • 于敦喜
  • 周俊虎
  • 刘建忠
  • 刘晶
  • 姚洪
  • 期刊论文
  • 会议论文
  • 专利文献

搜索

排序:

年份

作者

    • 狄冠丞; 周强; 陶信; 尚瑜; 宋涛; 卢平; 徐贵玲
    • 摘要: 采用模板法,以MCM-41为模板剂,2-噻吩乙醇和百里香酚蓝为前体,制备了掺硫介孔炭吸附剂,在固定床汞吸附实验装置上研究了其脱汞性能,考察了前体质量比、煅烧温度、烟气温度与烟气组分(O_(2)、SO_(2))等因素对其脱汞性能的影响,并对吸附剂的物化特性进行了表征,分析了其脱汞特性。结果表明:在前体(2-噻吩乙醇∶百里香酚蓝)质量比为6∶1、煅烧温度为900°C时制备获得的掺硫介孔炭MCM-900-1∶6的脱汞效率最高,其比表面积达932m^(2)/g,C质量分数为81.12%,S质量分数为10.24%;MCM-900-1∶6脱汞温度区间较广,在50~150°C下脱汞效率高达90%;MCM-900-1∶6有着良好的抗SO_(2)干扰能力,O_(2)对其脱汞有一定的促进作用;随着煅烧温度上升,掺硫介孔炭的分层现象消失且变得更加规整;FTIR表明900°C煅烧后,掺硫介孔炭的C=S取代O―H成为数量最多的官能团;XPS分析表明,掺硫介孔炭表面主要为噻吩硫与单质硫,它们对脱汞起主要作用。
    • 李雪; 东明; 张璜; 谢俊
    • 摘要: 传统除尘装置对煤燃烧排放的颗粒物存在穿透窗口,湿式静电除尘器通过喷水增湿能够显著提高其脱除效率。对于不同煤种和湿度,脱除效率存在差异。因此搭建潮湿环境下不同飞灰颗粒撞击平板实验台并建立颗粒碰撞动力学模型,探究恢复系数的变化规律。结果表明,65%湿度下无烟煤的恢复系数最小,易于捕集;随着相对湿度增加,毛细力占主导,阻尼系数、临界捕集速度和接触时间增加。
    • 何聪; 钟文琪; 周冠文; 陈曦
    • 摘要: 高海拔地区低压低氧的大气条件影响水泥生料在分解炉内的分解过程,探究水泥生料在该条件下的分解特性具有重要意义。通过构建模拟高海拔地区的低压悬浮炉实验系统,研究了压力、温度以及O_(2)浓度对高海拔条件下水泥生料分解特性的影响。研究结果表明:低压条件下水泥生料的分解符合随机成核和随后生长模型;随着反应压力的逐渐降低,水泥生料的分解速率逐渐增大,反应产物的比表面积以及比孔体积逐渐增大;但低压条件会加剧燃料的不完全燃烧,降低水泥生料的分解率;燃料以及水泥生料的反应速率均会随着反应温度的上升而逐渐增大,但水泥生料的分解率会先升高再降低;燃料的燃尽率以及反应速率随着O_(2)浓度的增加而增大,进而提高反应物的反应速率。
    • 白浩隆; 付亮亮; 许光文; 白丁荣
    • 摘要: 利用微型流化床反应装置,结合快速过程质谱仪,在850~940°C操作温度下,研究了三种不同粒度分布烟煤和无烟煤在热解、气化和燃烧反应条件下四种主要气态氮产物HCN、NH_(3)、NO和NO_(2)的释放规律。结果表明,微型流化床可以实时检测挥发分氮和焦炭氮的动态释放序和类型,热解、气化和燃烧反应气氛的改变主要影响HCN和NH_(3)的释放量。热解产物的气态氮主要是来自于挥发分,燃烧反应的HCN和NH_(3)的释放量与温度有明显关系,而气化反应的各类气态氮释放量随温度变化波动不大。煤颗粒尺寸和温度变化对烟煤和无烟煤中各类气态氮释放量产生影响比较复杂,其中NH_(3)的释放特性是区分挥发分N释放和半焦N释放的重要特征。
    • 刘轩; 苏银皎; 滕阳; 张锴; 王鹏程; 李丽锋; 李圳
    • 摘要: 采用微波消解法和氢化物发生-原子荧光光谱法考察了9台超低排放在役机组硒迁移转化规律,探究了循环流化床(CFB)和煤粉炉(PC)机组飞灰特性差异对硒吸附能力的影响。燃烧后煤中硒几乎全部呈现挥发态,底渣中残留量极低。与浓度归一化和质量分布法相比较,相对富集系数法可以客观地评价燃煤副产物中硒的富集能力,两类机组中硒均主要富集于飞灰中。CFB较低炉膛温度和添加CaO可以降低入炉煤中硒释放比例并增强飞灰对硒的吸附能力,故其底渣和飞灰中硒的富集程度均高于PC,导致脱硫石膏中硒富集程度低于PC。飞灰对硒的吸附量随比表面积或孔容积增大而增大,但随粒径或孔径增大而减小。CFB飞灰中未燃尽碳含量高、形状不规则、表面粗糙且存在较多蜂窝状孔隙,导致其对硒的富集程度高于PC飞灰。
    • 赵旭; 卜昌盛; 王昕晔; 张鑫; 程晓磊; 王乃继; 朴桂林
    • 摘要: 流化床铁基载氧体辅助富氧燃烧下传统石英砂床料被铁基载氧体替代,铁基载氧体扩展了传统床料的“热载体”的功能,另承担了“氧载体”的角色,为调节炉内氧分布与煤燃烧过程匹配提供了新思路。本文在热重实验平台探究了10%O_(2)/90%CO_(2)气氛下分析纯Fe_(2)O_(3)、赤铁矿及钢渣三种铁基载氧体辅助无烟煤焦燃烧特性及动力学。结果表明,相较于纯无烟煤焦燃烧,铁基载氧体辅助燃烧下无烟煤焦的燃烧特性得到显著改善,其中燃烧速率提高29%以上,燃尽温度降低65°C以上,综合燃烧指数提升2倍以上,活化能与指前因子同步增加且表现出“补偿效应”。三种铁基载氧体中分析纯Fe_(2)O_(3)对无烟煤焦燃烧特性的改善略优于赤铁矿和钢渣,钢渣可作为流化床铁基载氧体辅助富氧燃烧的床料替代石英砂。
    • 黄文仕; 张琦; 吴玉新; 张扬
    • 摘要: 利用Hencken型平焰燃烧系统开展了高速煤粉射流燃烧实验,并结合煤粉射流火焰形态图谱对其火焰形态及主要影响因素进行分析.结果表明,射流速度提高促使煤粉火焰形态从群燃火焰向分散燃烧转变,在高速下呈现出较短、较暗的煤粉火焰,其中煤粉质量浓度下降和流场卷吸掺混增强均有影响.高Re数受限射流会引发强烈壁面回流,并裹挟边壁落粉形成回流火焰,加剧了湍流掺混.自由射流条件下,并无明显回流火焰,但火焰长度仍随射流速度提高而降低.
    • 龚艳艳
    • 摘要: 燃料型NO_(x)是煤燃烧烟气中氮氧化物的主要组成部分,抑制燃料型NO_(x)的生成是低氮燃烧技术中降低NO_(x)排放初值的关键手段。燃料型NO_(x)的生成实属非常复杂的物理化学过程,涉及许多相互竞争的机制,受多个因素的综合影响。煤燃烧过程中燃料型NO_(x)的生成主要包括煤热解过程中挥发分N的释放过程、挥发分燃烧过程中NO_(x)的生成及还原过程、焦炭燃烧过程中NO_(x)的生成及还原过程。综述煤燃烧过程中燃料氮的迁移转化规律的研究结果,对煤燃烧中均相和非均相氮化学反应的详细机制进行整理并分析燃料型NO_(x)形成的内在机理,发现煤热解过程中煤中氮迁移形成挥发分N和焦炭N,迁移过程由煤种和热解条件共同决定。热解条件不仅影响挥发分N的释放,还影响焦炭的反应活性,从而影响焦炭燃烧及焦炭N的转化过程。挥发分N主要以HCN和NH;的形式存在,通过详细的均相氮化学机理建立挥发分NO_(x)的生成预测模型,以期较为准确地预测煤燃烧过程中挥发分NO_(x)的形成过程。焦炭N的转化过程主要涉及焦炭N-O;和焦炭-NO 2个反应,焦炭NO_(x)的形成是受煤种、温度、氧气浓度、矿物组分、焦炭粒径、焦炭反应活性等因素交互影响的综合结果,研究焦炭N的转化需综合考虑各因素的影响。
    • 朱晓蕾; 杨建平; 李海龙; 赵永椿; 张军营
    • 摘要: 煤燃烧是全球最主要的人为汞排放源,燃煤电厂含汞脱硫废水大量排放对人类健康和生态环境造成严重威胁,亟需开发高效、经济的脱硫废水汞离子脱除技术。对燃煤副产物飞灰进行活化后提取铝硅矿物,并利用飞灰中的铁质矿物制备了磁性沸石汞吸附剂,解决吸附剂吸附汞后难以从废水中分离,造成汞二次释放问题。采用BET、XRD、TEM等表征手段对合成的磁性沸石进行表征分析,系统研究了固液比、溶液初始pH、振荡时间等参数对磁性沸石汞离子吸附性能的影响,对磁性沸石吸附汞离子过程进行动力学研究,结果表明合成的磁性沸石为球形核壳结构,磁核被沸石均匀包裹,磁性沸石的比表面积为4.46 m^(2)/g,最可几孔径为18.25 nm,属于介孔范围,磁性沸石表现出磁化滞后,其矫顽力约10 000 A/m,可通过外加磁场从脱硫废水中分离。试验最佳吸附条件为固液比5 g/L、最佳初始pH为5、振荡时间90 min,在此条件下Hg^(2+)脱除率达92%。动力学研究结果表明,准一级动力学模型能较准确描述Hg^(2+)吸附量随时间的变化,拟合的平衡吸附容量为23.24 mg/g,优于商业活性炭汞吸附剂。磁性沸石对脱硫废水中汞离子具有良好的脱除性能,为燃煤飞灰的精细化利用提供了新的思路。
    • 刘新华; 韩振南; 韩健; 梁斌; 张楠; 胡善伟; 白丁荣; 许光文
    • 摘要: 解耦燃烧原理最早于1995年被用于烟煤的低氮无烟燃烧,其通过分离燃料热解与半焦燃烧,打破两反应在传统燃烧方式中的耦合作用,并通过重构热解挥发分与半焦的燃烧反应,实现挥发分完全燃烧的同时有效还原燃烧生成的NO_(x)。基于此方法的燃烧技术在1997年被定义为“解耦燃烧”。本文围绕固体燃料解耦燃烧高效低氮化原理、燃烧过程反应重构原则和反应过程定向调控关键要素,综合总结近三十年在煤炭与生物质解耦燃烧基础研究、技术开发、民用及工业燃烧典型应用及其实现的燃烧强化效果等方面取得的主要进展。解耦燃烧耦合其他诸如燃料再燃、燃料或空气分级燃烧、流态重构燃烧等先进燃烧技术可以进一步提高燃烧效率,降低空气污染物排放。解耦燃烧技术特别适合高含水燃料,对创新低阶煤和有机废弃物等的高效低氮燃烧新技术具有重要的科学意义和应用价值。
  • 查看更多

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号