您现在的位置: 首页> 研究主题> 熔化特性

熔化特性

熔化特性的相关文献在1992年到2022年内共计82篇,主要集中在金属学与金属工艺、冶金工业、化学工业 等领域,其中期刊论文60篇、会议论文19篇、专利文献45443篇;相关期刊43种,包括北京科技大学学报、东北大学学报(自然科学版)、广西大学学报(自然科学版)等; 相关会议19种,包括第十届中国钢铁年会暨第六届宝钢学术年会、第二届钱江创伤医学高峰论坛暨2015年浙江省创伤学术年会、第十三届中国国际纳米科技(成都)研讨会等;熔化特性的相关文献由280位作者贡献,包括刘浏、吴伟、孟华栋等。

熔化特性—发文量

期刊论文>

论文:60 占比:0.13%

会议论文>

论文:19 占比:0.04%

专利文献>

论文:45443 占比:99.83%

总计:45522篇

熔化特性—发文趋势图

熔化特性

-研究学者

  • 刘浏
  • 吴伟
  • 孟华栋
  • 胡连海
  • LIU Liu
  • WU Wei
  • 丘泰
  • 任德亮
  • 刘凤美
  • 卫国强
  • 期刊论文
  • 会议论文
  • 专利文献

搜索

排序:

年份

    • 王艺慈; 王一帆; 王瑞鑫; 赵凤光; 柴轶凡; 罗果萍
    • 摘要: 为了保证玻璃液顺利浇注成型,并为高炉渣和铬铁合金渣协同制备CaO-MgO-Al_(2)O_(3)-SiO_(2)-Cr_(2)O_(3)体系建筑微晶玻璃提供基础的工艺技术参数,采用FactSage7.1热力学软件绘制CaO-MgO-Al_(2)O_(3)-SiO_(2)-Cr_(2)O_(3)玻璃体系的五元相图,并通过试验探究基础玻璃熔体的黏度和熔化特性。结果表明,在FactSage7.1绘制的相图中,随着Cr_(2)O_(3)含量的增加,相图的液相区范围不断缩小,表明玻璃的进一步熔化受到阻碍。晶核剂Cr_(2)O_(3)的质量分数由0.85%增加到2.05%的过程中,玻璃熔体黏度逐渐减小,熔化性温度逐渐升高,在采用熔融法制备CaO-MgO-Al_(2)O_(3)-SiO_(2)-Cr_(2)O_(3)体系基础玻璃时应使熔融温度高于1469°C。Cr_(2)O_(3)含量增加会使基础玻璃熔化温度升高,具体表现为各组试样的软化温度、半球温度和流动温度均不断升高,因此应尽量降低基础玻璃原料配比中Cr_(2)O_(3)的含量。
    • 熊鑫; 苏庆宗; 农增耀; 王亚雄
    • 摘要: 为了提高相变蓄热系统在实际应用中的蓄热速率,本文建立了管壳式相变蓄热单元可视化实验平台,提出了一种外部加热法的强化传热方式,讨论了相变蓄热单元在外部加热法时的熔化特性和传热机理。通过Fluent软件模拟对比了外部加热法和内部加热法在熔化过程中的液相分数、熔化速率和均匀性等方面的差异。研究结果表明:外部加热法的使用能大幅提升蓄热单元的蓄热效率。与内部加热法相比,外部加热法在熔化过程中的传热和相变更加均匀。相比于内部加热法,由于外部加热法传热面积较大,熔化时间缩短了69.1%;在消除传热面积的影响后,外加热方法依靠广泛而强烈的自然对流使熔化时间减少了23.2%。
    • 年冠华; 富强
    • 摘要: 为了实现在铁水脱磷过程中取代萤石造渣的目的,在实验室条件下试制了铁酸钙渣,并进行铁水脱磷的实验研究。依据铁酸钙的配比,分别在平炉和回转炉进行了烧制铁酸钙。通过XRD检测和矿相分析发现,采用回转窑试制的铁酸钙组织结构较平炉试制的铁酸钙更为均匀致密,熔点更低。综合比较回转窑和平炉两种工艺的产品质量和价格,选择回转窑方式生产铁酸钙最为合适。利用铁酸钙和石灰作为脱磷剂,采用铁酸钙与石灰为1∶1的配比能够获得最好的铁水脱磷效果。
    • 白海龙; 顾鑫; 赵玲彦; 严继康; 郭胜惠
    • 摘要: 通过添加质量分数0.1%Sb2 SnO5纳米颗粒,制备了Sn30Bi0.3Ag(SBA)-0.1%Sb2 SnO5复合焊料合金.采用金相显微镜、扫描电子显微镜(SEM)、能谱仪(EDS)观察焊料合金的金相组织.采用差示扫描量热仪(DSC)测试其熔化特性.采用万能材料试验机测试其力学性能.并分析Sb2 SnO5纳米颗粒对SBA合金的力学、熔化特性影响.实验结果表明:Sb2 SnO5纳米颗粒能有效细化SBA合金组织,对SnBi共晶相细化效果更明显;在20°C下时效500 h后,SBA-0.1%Sb2 SnO5合金抗拉强度和延伸率分别下降2.6%和14.5%,SBA合金抗拉强度和延伸率分别下降15.9%和21.9%.添加Sb2 SnO5纳米颗粒后,SBA合金力学性能随时效进行而下降的问题得以解决;在添加0.1%Sb2 SnO5纳米颗粒后,SnBi共晶组织和β-Sn组织的熔程分别降低2.1°C和1.3°C.
    • 邱天; 刘树龙; 朱明成; 闫萍; 高超; 江正卓; 朱嘉仪
    • 摘要: 文章以Sn2.5Ag0.7Cu0.1系软钎料钎焊接头为基础,制备不同Ni含量的钎料合金,添加了4:1(Ce:La)比例的微量RE(稀土),对软钎料钎焊接头在不同Ni含量下的显微组织、熔化特性、力学性能展开实验.运用钎料完成纯铜钎焊处理后,测试不同Ni含量下的钎料合金钎焊接头蠕变性能,结果发现加入Ni有助于对钎料合金力的纤维组织、力学性能有所提升,但是不会很大程度影响合金熔化特性.本次试验发现了在Ni是0.05%、1%含量情况下,接头的蠕变性能较其他Ni含量明显更优.
    • 王星星; 杜全斌; 彭进; 崔大田; 于涛源
    • 摘要: By revealing the thermodynamic properties of AgCuZnSn brazing alloys, brazing alloys of high Sn content were prepared using melting alloyed method based on BAg50CuZn substrate. The melting temperature of brazing alloys was observed by differential scanning calorimeter (DSC), and its phase transformation thermodynamic characteristic was analyzed with the thermal analysis kinetics of non-isothermal differential and integral methods. The mathematical expression of process entropy and performance entropy of brazing alloys were proposed. The results show that the DSC endothermic peak of AgCuZnSn brazing alloys shifts to the left, and its phase transformation temperature interval would be narrower with the increase of Sn content. The phase transition activation energy of AgCuZnSn brazing alloys gradually increases using non-isothermal methods. Under the same Sn content, the phase transition activation energy of brazing alloys with non-isothermal differential method is exactly the same as that of integral method. When Sn content is 7.2% (mass fraction), the transition activation energy and pre-exponential factor of brazing alloys reach the maximum, which are 364.46 kJ/mol and 7.29×1020, respectively. The results indicate that the expression of process entropy and performance entropy could quantitative analyze the brazability of AgCuZnSn brazing alloys.%为了揭示AgCuZnSn钎料的热力学特性,以BAg50CuZn钎料为原材料,采用熔炼合金化方法制备高锡AgCuZnSn钎料.借助差示扫描量热仪(DSC)测定不同Sn含量AgCuZnSn钎料的熔化温度,运用热分析动力学中的非等温微分法和积分法分析AgCuZnSn钎料的相变热力学特性.利用热力学熵的概念,提出AgCuZnSn钎料钎焊工艺熵和接头性能熵的数学表达式.结果表明:随着Sn含量升高,AgCuZnSn钎料的吸热峰向左偏移,且在吸热峰钎料相变温度区间变窄.非等温微分法和积分法得到的AgCuZnSn钎料的相变活化能随着Sn含量增加逐渐增大;当Sn含量相同时,两种方法得到的钎料相变活化能几乎相同.当Sn含量为7.2%(质量分数)时,AgCuZnSn钎料的相变活化能和指前因子值最大,分别为364.46 kJ/mol和7.29×1020.试验结果证实了钎焊工艺熵和接头性能熵的表达式在一定程度上可定量表征AgCuZnSn钎料的钎焊性能.
    • 赵国际; 光华; 盛光敏
    • 摘要: 研究了快速凝固工艺对Sn?8Zn?3Bi合金显微组织和熔化特性的影响,分析了经150°C高温时效后钎料/铜焊点显微组织演变以评估连接的可靠性。结果表明:经快速凝固后,Sn?8Zn?3Bi 合金中的 Bi 完全固溶于Sn基体并形成枝晶结构;与常规熔铸态合金相比,Bi在Sn基体中的过饱和固溶导致快速凝固态钎料的熔点上升至接近Sn?Zn共晶合金熔点,但同时减小了由于Bi添加对Sn?Zn合金熔化行为产生的不利影响,钎料/铜焊点界面金属间化合物(IMC)层更为致密和均匀;使用快速凝固态钎料能够显著抑制高温时效过程中钎料/铜焊点界面IMC的形成与生长并改善其界面高温稳定性。%The effects of rapid solidification on the microstructure and melting behavior of the Sn?8Zn?3Bi alloy were studied. The evolution of the microstructural characteristics of the solder/Cu joint after an isothermal aging at 150 °C was also analyzedto evaluate the interconnect reliability. Results showed that the Bi in Sn?8Zn?3Bi solder alloy completely dissolved in the Sn matrix with a dendritic structure after rapid solidification. Compared with as-solidified Sn?8Zn?3Bi solder alloy, the melting temperature of the rapid solidified alloy rose to close to that of the Sn?Zn eutectic alloy due tothe extreme dissolution of Bi in Sn matrix. Meanwhile, the adverse effect on melting behavior due to Bi addition wasdecreasedsignificantly. The interfacial intermetallic compound (IMC) layer of the solder/Cu joint was more compact and uniform. Rapid solidification process obviously depressed the formation and growth of the interfacial IMC during the high-temperature aging and improved the high-temperature stability of the Sn?8Zn?3Bi solder/Cu joint.
    • 杨斌; 陈剑明; 邬善江; 李明茂; 张建波
    • 摘要: The Sn-58Bi-(0-3)Ga alloys were prepared by melting and casting method.The research was focused on the effect of Ga content on properties of melting, wetting and shear strength subsequently.The characteristic of interface between Sn-58Bi-(0-3)Ga and Cu was investigated as well.The results showed that the addition of Ga led to the decrease of the melting point and the increase of melting range.Compared with the alloy without Ga addition, the spreading rate of Sn-58Bi-1Ga on Cu substrate decreased obviously while the shear strength increased slightly.Along with the content of Ga increasing to 2% and 3%, the shear strength decreased significantly and the spreading rate decreased appreciably.Cu and Sn elements were the main components of the Sn-58Bi/Cu interface, while Ga and Cu segregated greatly on the interface between Sn-58Bi-(1-3)Ga and Cu.In addition, the interface compounds were determined via energy dispersion spectrum (EDS) analysis at last.%采用熔炼铸造法制备了Sn-58Bi-(0~3)Ga焊料合金,研究了Ga元素含量对合金熔化特性、润湿和剪切性能的影响,并利用扫描电镜研究了Sn-58Bi-(0~3)Ga/Cu基体界面特征.结果表明,Ga元素的添加降低了合金的熔点,增大了合金的熔程,相比于Sn-58Bi合金,Sn-58Bi-1Ga焊料合金在铜基体的铺展率显著下降,剪切强度略有提高,随着Ga含量提高至2%、3%,合金的铺展率略有下降,剪切强度显著降低;Sn-58Bi/Cu界面主要组成元素为Sn和Cu,Sn-58Bi-(1~3)Ga/Cu界面上出现了明显的Ga和Cu元素偏聚界面层,结合特征点的能谱成分分析,确定了界面化合物的组成.
    • 郭菲菲; 陈晓宇; 史秀梅; 齐岳峰; 张国清; 黄晓猛; 祁宇
    • 摘要: The effects of Pd content on the melting properties,spreading properties on oxygen-free copper and nickel,as-cast organization of Ag-Cu-Pd solder,and brazing interface were studied.The results show that the solidus temperature and the liquidus temperature of Ag-Cu-Pd solder are obviously improved with the increase of Pd content.Accordingly,the temperature interval of solid-liquid phase line also increases.When Pd is 10 % and 20 %,the solder spreadability is optimal.In addition,the spreadability of solder alloy is reduced with the rising Pd content.When Pd is increased to 30 %,solder spreadability begins to deteriorate and there are signs of slight erosion.The Pd in Ag-Cu-Pd alloy is mainly present in the Cu-rich phase.The brazing interface forms a continuous intermetallic compound (IMC) layer when Ag-28Cu-20Pd solder is welded to the oxygenfree copper plate,with most of Pd distributing in IMC layer.%通过差热分析、扫描电镜显微组织分析、真空钎焊等手段,对不同Pd含量Ag-Cu-Pd钎料的熔化特性以及在无氧铜和镍上铺展性进行研究,并对铸态组织和钎焊界面组织进行分析.结果表明,随着Pd含量增加,Ag-Cu-Pd钎料的固相线温度、液相线温度有明显提高,固液相线温度间隔也随之增大;当Pd含量为10%和20%时钎料铺展性良好,且随着Pd含量增加,钎料合金铺展性降低,但当Pd增加到30%时,钎料铺展性变差且有轻微侵蚀迹象;铸态Ag-Cu-Pd合金中Pd元素主要存在于富铜相中;Ag-28Cu-20Pd钎料焊接无氧铜板时的钎焊界面,形成连续的金属间化合物(IMC)层,钎料中Pd元素主要分布在IMC层上.
  • 查看更多

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号