摘要:广州S波段双偏振天气雷达低仰角多方位存在遮挡,高仰角也存在部分遮挡。基于卷积神经网络等深度学习方法,构建垂直填补(vertical echo-filling,VEF)和水平填补(horizontal echo-filling,HEF)网络架构,基于两种架构,利用无遮挡区的反射率因子ZH、差分反射率Z_(DR),差传播相移率KDP构建训练集,填补遮挡区的ZH和Z_(DR)。针对仅0.5°仰角存在遮挡的区域,基于VEF架构,利用上层多个仰角、径向、距离库的三维数据,分距离段训练垂直填补模型。针对遮挡仰角较高的区域,则基于HEF架构,利用同一仰角左右相邻的多个径向、距离库的数据,分遮挡径向训练水平填补模型。根据解释方差、平均绝对偏差和相关系数3个指标和3个个例,对模型效果进行评估。结果表明:ZH填补模型的解释方差最大为0.92,平均绝对偏差最小为1.69 dB,相关系数最高为0.96;Z_(DR)填补模型的解释方差最大为0.92,平均绝对偏差最小为0.12 dB,相关系数最高为0.96。利用该研究构建的深度学习填补架构,可有效填补偏振雷达遮挡区域回波,提高雷达数据质量。