枯枝落叶层
枯枝落叶层的相关文献在1981年到2022年内共计156篇,主要集中在林业、农业基础科学、畜牧、动物医学、狩猎、蚕、蜂
等领域,其中期刊论文142篇、会议论文2篇、专利文献160853篇;相关期刊93种,包括山西水土保持科技、安徽林业科技、林业勘查设计等;
相关会议2种,包括中国土壤学会第六次全国代表大会暨学术会、第四次全国森林土壤学术讨论会等;枯枝落叶层的相关文献由360位作者贡献,包括吴钦孝、赵鸿雁、刘向东等。
枯枝落叶层—发文量
专利文献>
论文:160853篇
占比:99.91%
总计:160997篇
枯枝落叶层
-研究学者
- 吴钦孝
- 赵鸿雁
- 刘向东
- 郭剑芬
- 杨玉盛
- 严登华
- 严登明
- 史婉丽
- 林鹏
- 毕吴瑕
- 秦天玲
- 翁白莎
- 陈光水
- 黄承标
- 程积民
- 韩冰
- 于冬梅
- 于法展
- 仲敏
- 余坤勇
- 刘健
- 刘少冲
- 刘文耀
- 姚雄
- 张培栋
- 李晓峰
- 李根柱
- 杨建卫
- 杨民胜
- 段文标
- 王彦辉
- 王知符
- 王贺新
- 等
- 罗孟书
- 赵凯
- 赵星
- 赵雨森
- 郑兴明
- 陈云明
- 陈樟昊
- 陈英敏
- 陶大燕
- Adams
- Andrew T.Hudak
- Binkley
- Cadisch
- Dan
- Dan Binkley
- E.D. de Almeida
-
-
许小明;
易海杰;
何亮;
吕渡;
贺洁;
邹亚东;
王浩嘉;
薛帆;
田起隆;
王妙倩;
张晓萍
-
-
摘要:
枯枝落叶层是林地垂直结构中参与水文循环过程的重要作用层,在涵养水源和保持水土中发挥着重要作用。黄土高原经过20年植被快速恢复,枯落物覆盖使近地表植被特征和生态过程变化明显,这必将影响地表土壤水分入渗、产汇流等水文和土壤侵蚀过程。为全面掌握黄土高原地区林地枯枝落叶层的水土保持效应研究动态,系统回顾了林地枯枝落叶层在凋落动态、蓄积量变化、截留降雨、阻延地表径流、提高土壤抗蚀抗冲能力和增加土壤入渗等方面的研究历史。分析了目前林地枯枝落叶层研究中存在的若干问题,提出未来黄土高原地区应加强野外坡面枯落物原位长期监测和降雨试验研究,开展多地貌、多尺度研究,关注天然林和人工林枯枝落叶层水土保持功能的对比研究,以及水文物理过程模型建立和参数确定,并重视林地枯枝落叶层的保护和监管。
-
-
-
-
摘要:
“林区可燃物载量已经相当高了,森林防火不能有丝毫松懈。”林下枯枝落叶层叠,深的地方能没过小腿,浅的盖过脚面。眼下正是春季防火期,在长白山自然保护管理中心头道保护站森林消防队当了15年消防员的李忠磊,每天都关注着森林火险气象等级情况。吉林省是全国重点林业省份之一,森林覆盖率达45%。而长白山区素有“长白林海”之称,是全国六大林区之一,世界自然保留地之一。
-
-
-
何小康;
郭建;
方伟东
-
-
摘要:
文章综述了国内外林分层次森林水源涵养功能的研究现状,详细梳理了林冠截留、枯枝落叶层持水特性和土壤层水源涵养功能等方面的研究成果,同时分析了目前林分层次水源涵养功能研究存在的问题,并对林分层次水源涵养功能研究趋势进行了展望.
-
-
-
彭聪;
舒敏瑞
-
-
摘要:
曹仙连体樟是由4株基部相互连成一体的樟树组成的樟树群落,坐落在江西省靖安县双溪镇曹山村叶家自然村。连体樟的基部形成了一个整体,占地面积东西长12.8米、南北宽5.2米。树高11.8米,垂荫666平方米,远看就像一株树。连体樟东向树胸围426厘米,南向树胸围530厘米,西向树胸围450厘米,北向树胸围460厘米,分享四方阳光,生长旺盛。
-
-
-
-
摘要:
"俺用废弃玉米秸秆种植的赤松茸,品质一点儿也不差。"2016年5月17日,在河南省社旗县豫茸生态专业合作社的赤松茸研发种植基地大棚里,理事长王振泉看着工人们将一株株色泽艳丽的赤松茸采摘装箱,高兴地说。看到大棚里一行行拌以腐土和玉米秸秆的赤松茸生长在基床上,密密麻麻点缀其中的鲜嫩赤松茸着实令人垂涎欲滴,工人们小心翼翼,精心选摘,生怕损坏了这些蕴含着财富的"宝贝"。赤松茸,俗称益肾菇、粗腿菇,是国际菇类交易市场上的十大品种之一。据王振泉介绍,赤松茸原本是生长在赤松林树根部,与树根共生的一种野生食用菌,
-
-
王小红;
张金凤;
林开淼;
卢正立;
曾宏达;
郭剑芬
-
-
摘要:
Carbon ( C) and nutrient stocks of forest floor were studied in artificial regeneration Castan-opsis carlesii forests with stand ages of 21 , 31 and 49-year old in Shunchang , Fujian.The results showed that the standing crop of forest floor ranged from 3.94 to 4.95 t · hm-2 , with the maximum mass in the 31-year old forest and the minimum in the 49-year old forest .Concentrations of C , N, P and K were 44.09%~47.46%, 11.9~13.8 g· kg-1 , 0.5~0.9 g· kg-1 and 1.4~5.1 g· kg-1 , re-spectively.C concentrations of forest floor in 21-and 49-year old forests were significantly higher than those in 31-year old forest , while concentrations of N and P in forest floor of 49-year old forest were higher than those in the 21-and 31-year old forests.Also, forest floor in the 49-year old forest had the lowest K concentration .Forest floor C stock in the 21-year old forest was 1.03 and 1.23 times higher than those in the 31-and 49-year old forests , respectively .The K stock in 49-year old forest was far below it in 21-and 31-year old forests.Overall, carbon and nutrient pools of forest floor in different forests were related to forest characteristics , standing crop of forest floor , etc.%对福建南平顺昌县不同林龄米槠(Castanopsis carlesii)人促更新林枯枝落叶层和主要营养元素现存量进行测定,探究其随林龄的变化趋势。结果表明:不同林龄米槠人促更新林枯枝落叶层现存量为3.94~4.95 t · hm-2,其中49 a生人促林枯枝落叶层现存量最小,31 a生的最大。不同林龄枯枝落叶层C、 N、 P、 K的浓度分别为44.09%~47.46%,11.9~13.8 g · kg-1,0.5~0.9 g· kg -1,1.4~5.1 g· kg -1。21 a生和49 a生人促更新林枯枝落叶层C浓度明显高于31 a生林分。49 a生人促更新林枯枝落叶层N和P浓度均高于21 a生和31 a生林分,但该林分枯枝落叶层K浓度却最低。21 a生米槠人促更新林枯枝落叶层C贮量分别是31 a生和49 a生林分的1.03倍和1.23倍,49 a生米槠人促更新林K贮量远低于21 a生和31 a生。不同林龄枯枝落叶层碳和养分贮量差异与林分特征、各林分枯枝落叶层现存量及养分浓度等有关。
-
-
刘咏梅;
汪步惟;
李京忠;
庞国伟
-
-
摘要:
枯枝落叶层在植被防止土壤侵蚀的功效中发挥着主导作用,枯落层的光谱特征分析将为遥感估算枯落层盖度提供重要依据。该文利用陕北延河流域典型植被群落土壤和枯落层样本的光谱测试数据,分析土壤和枯落层在在可见光-近红外波段(400~1100 nm)和短波红外波段(1100~2500μm)的光谱差异特征及主要影响因素,并进一步评价归一化植被指数(NDVI,normalized difference vegetation index)和归一化衰败植被指数(NDSVI,normalized difference senescent vegetation index)、归一化差值耕作指数(NDTI,normalized difference tillage index)、纤维素吸收指数(CAI,cellulose absorption index)等植被指数区分土壤和枯落层的有效性。结果表明,在可见光-近红外波段土壤和枯落层的反射光谱特征相似,两者难以区分,但在短波红外波段的1700和2100 nm处因枯落层具有纤维素吸收特征而与土壤存在差异。含水量对土壤和枯落层反射光谱特征的影响强烈,水分的存在降低了土壤和枯落层在整个光谱范围的差异性。光谱空间中枯落线和土壤线的关系表明,NDVI 指数难以反映土壤和枯落层的光谱差异特征;由于宽波段的影响,利用多光谱指数NDSVI和NDTI表征枯落层信息具有一定的局限性;高光谱指数CAI利用了枯落层与土壤在2100 nm处的差异特征,能够较好地区分出土壤与枯落层,该研究为利用遥感技术有效提取枯落层等衰败植被信息提供了新的途径。%Plant litter plays a critical role in controlling and protecting soil against water erosion and increasing soil organic carbon. The presence of plant litter efficiently reduces erosion and surface runoff, and influences the cycle of nutrients, carbon, and energy in ecosystem. Remote sensing can provide a new way to differentiate litter from soil, and spectral difference of plant litter and soil is the primary basis for the remotely sensed estimation of plant litter coverage. By using spectral measurement of the soil and litter samples of typical vegetation communities in the Yanhe River basin of Northern Shaanxi, the difference of spectral characteristics between soil and litter in the VIS-NIR (400-1 100 nm) and SWIR (1 100-2 500μm) wavelengths and main impact factors were analyzed; the effectiveness of NDVI (normalized difference vegetation index) and typical senescent vegetation indexes such as NDSVI (normalized difference senescent vegetation index), NDTI (normalized difference tillage index) and CAI (cellulose absorption index) was evaluated to distinguish litter from soil. The results showed that the spectral behaviors of soil and litter were similar in the VIS-NIR wavebands, and the main difference between soil and litter was that the slopes of spectra of the litter samples were slightly greater than that of the soil samples. The two water absorption bands, centered at 1 400 and 1 900 nm, had the common spectral features in soil and litter within the SWIR waveband, while diagnostic features could be observed at 1 700 and 2 100 nm in the reflectance spectra of the dried litter samples, which were associated with the cellulose-lignin absorptions. Water content influenced the reflectance spectra of soil and litter samples obviously, and the reflectance of wet soil and litter was reduced by half compared to dry soil and litter. The cellulose-lignin absorption at 2100 nm obscured and disappeared in the reflectance spectra of wet litter samples, the spectra shape of the wet litter appeared very similar to that of wet soil, and hence it was indistinguishable between soil and litter. The existence of residue line which presents the linear regression relationship between any couple of TM bands was first verified with the litter samples. According to the relationship of soil line and residue line in feature space of two TM bands, residue line existed (R2=0.86) and was closed to soil line (R2=0.97) between TM3-TM4 wavebands, the NDVI values of soil samples were similar to the litter samples, and spectral differences of soil and litter can't be characterized by NDVI. TheR2 of 0.81 illustrated the existence of soil line, but residue line (R2=0.10) can’t be observed between TM3-TM5 wavebands, and the NDSVI values of soil and litter samples were mixed and featureless. Both soil line (R2=0.95) and residue line (R2=0.65) existed between TM5-TM7 wavebands, and NDTI values of soil and litter samples were still in proximity to each other. Due to low spectral resolution, there were limitations for multispectral indexes (like NDSVI and NDTI) to extract the information of litter. The spectral separability between soil and litter can be represented by the hyperspectral index CAI, which takes the advantage of obvious difference between soil and litter at 2 100 nm and thereby presents a good result for distinguishing litter from soil.
-