您现在的位置: 首页> 研究主题> MXene

MXene

MXene的相关文献在2013年到2023年内共计1997篇,主要集中在一般工业技术、化学工业、化学 等领域,其中期刊论文223篇、专利文献1774篇;相关期刊120种,包括材料导报、材料工程、复合材料学报等; MXene的相关文献由4955位作者贡献,包括孙宏阳、张业龙、徐晓丹等。

MXene—发文量

期刊论文>

论文:223 占比:11.17%

专利文献>

论文:1774 占比:88.83%

总计:1997篇

MXene—发文趋势图

MXene

-研究学者

  • 孙宏阳
  • 张业龙
  • 徐晓丹
  • 冯金奎
  • 闵永刚
  • 何青
  • 章冬雯
  • 王海辉
  • 邱介山
  • 刘屹东
  • 期刊论文
  • 专利文献

搜索

排序:

年份

作者

    • 葛瑞; 陶可心; 李潇潇; 王振; 毕雪庆; 战艳虎; 李玉超
    • 摘要: 实验将MXene/PVDF(聚偏氟乙烯)(A)作为介电增强相,将BN(氮化硼)/PVDF(B)作为击穿增强相,交替涂膜制成三明治(ABA型)结构PVDF复合电介质材料.利用场发射扫描电子显微镜(FESEM)和X射线衍射(XRD)对复合电介质薄膜的结构、形貌以及填料的分散状态进行了表征,并着重研究了材料的介电性能及储能特性.结果表明:三明治结构电介质材料能协调介电与击穿之间的矛盾,起到协同增强电介质材料储能密度的效果.其中,A2.5B2A2.5型PVDF复合电介质材料的介电常数达25.1(100Hz下),是纯PVDF的2.5倍,介电损耗仍保持较低水平(tanδ=0.03);此外,与MXene/PVDF2.5wt% 单层膜相比,其击穿强度提升了2倍(110.28MV·m-1),储能密度提高了201%(1.35J·cm-3).
    • Haiyan He; Yuxian Chen; Cuizhen Yang; Lu Yang; Quanguo Jiang; Huajie Huang
    • 摘要: The technique of electrocatalytic hydrogen evolution reaction (HER) represents a development trend of clean energy generation and conversion,while the electrode catalysts are bound to be the core unit in the electrochemical HER system.Herein,we demonstrate a bottom-up approach to the construction of three-dimensional (3D) interconnected ternary nanoarchitecture originated from Ti_(3)C_(2)T_(x)MXene,graphitic carbon nitride nanosheets and graphene (MX/CN/RGO) through a convenient co-assembly process.By virtue of the 3D porous frameworks with ultrathin walls,large specific surface areas,optimized electronic structures,high electric conductivity,the resulting MX/CN/RGO nanoarchitecture expresses an exceptional HER performance with a low onset potential of only 38 m V,a small Tafel slop of 76 m V dec^(-1) as well as long lifespan,all of which are more competitive than those of the bare Ti_(3)C_(2)T_(x),g-C_(3)N_(4),graphene as well as binary MX/RGO and CN/RGO electrocatalysts.Theoretical simulations further verify that the ternary MX/CN/RGO nanoarchitecture with ameliorative band structure is able to facilitate the electron transport and meanwhile offer multistage catalytically active sites,thereby guaranteeing rapid HER kinetics during the electrocatalytic process.
    • Fangli Yang; Dylan Hegh; Dongxing Song; Jizhen Zhang; Ken Aldren S.Usman; Chao Liu; Zhiyu Wang; Weigang Ma; Wenrong Yang; Si Qin; Joselito M.Razal
    • 摘要: Through material innovation,nanoscale structural design and hybrid manufacturing methods,great efforts have been made in developing high-performance energy storage systems.These devices can be comprised of twodimensional(2D)nanomaterials,such as MXene,and show promise for use in energy storage devices.In order to achieve better electrochemical properties of MXene,one crucial technique is to modify its structure by introducing defects or heteroatom dopants,which may expand the interlayer spacing and increase the ion transfer kinetics during the charge/discharge process.Here,a modified two-step multi-element strategy is explored utilizing ammonium citrate as intercalant and nitrogen source to enhance the level of heteroatom doping during annealing of MXene with sulfur.The resulting nitrogen/sulfur co-doped MXene displayed enhanced gravimetric capacitance(495 F g^(-1) at 1 A g^(-1)),outstanding rate capability(180 F g^(-1) at 10 A g^(-1))and excellent cycle stability(98%retention after 6000 charge/discharge cycles).The synthesis of NS-MXene reveals a novel and facile multiheteroatom pathway for functionalizing Ti_(3)C_(2)Tx MXene and demonstrates the potential variety of this family of modified MXenes that has yet to be explored,as well as unveils great promise for use in applications such as high performance supercapacitors.
    • 陈达; 石宇晴; 张伟; 练美玲
    • 摘要: MXene是一种早期过渡金属碳化物、氮化物或碳氮化物组成的二维(2D)层状材料。由于MXene具有独特的层状形态、高电导率、高比表面积、优异的亲水性和良好的热稳定性等特性,在物理、化学和纳米技术领域具有广阔的应用前景,可应用于催化、储能和传感器等多种科学领域。本文主要综述基于MXene的电化学传感器的研究进展,介绍电化学传感器的原理、构成,传感界面修饰和MXene制备方法,着重讨论MXene在电化学酶传感器、电化学非酶传感器、电化学免疫传感器、电化学适体传感器和电化学分子印迹传感器方面的研究进展,指出MXene电化学传感领域工业化和商业化利用不足、新种类MXene开发的挑战,对其在各类分析物检测、更多潜在领域的应用进行展望。
    • 严小飞; 方杰; 朱晨凯; 李家炜; 祝成炎; 戚栋明
    • 摘要: 为进一步推动MXene(Ti_(3)C_(2)T_(x))在纺织领域中功能化和智能化方面的应用,结合国内外相关文献,着重介绍MXene的制备方法,包括HF腐蚀法、原位产生HF腐蚀法、熔融盐法、电化学法、浓碱法等;详细综述了MXene在纺织领域的力学、电学、阻燃抑烟、储能等方面的研究进展;总结了MXene在以纺织油墨、纤维、涂层等为载体的智能织物和柔性传感器等应用中的优异性能。最后指出了MXene在树脂基体中分散性较差,在空气中易被氧化和使用耐久性等不足及其未来发展方向。
    • Xiao Li; Zhengchen Wu; Wenbin You; Liting Yang; Renchao Che
    • 摘要: MXene, as a rising star of two-dimensional(2 D) materials, has been widely applied in fields of microwave absorption and electromagnetic shielding to cope with the arrival of the 5 G era. However, challenges arise due to the excessively high permittivity and the difficulty of surface modification of few-layered MXenes severely, which infect the microwave absorption performance. Herein, for the first time, a carefully designed and optimized electrostatic selfassembly strategy to fabricate magnetized MXene-r GO/Co Ni film was reported. Inside the synthesized composite film, r GO nanosheets decorated with highly dispersed Co Ni nanoparticles are interclacted into MXene layers, which effectively suppresses the originally self-restacked of MXene nanosheets, resulting in a reduction of high permittivity. In addition, owing to the strong magnetic coupling between the magnetic Fe Co alloy nanoparticles on the r GO substrate, the entire MXener GO/Co Ni film exhibits a strong magnetic loss capability. Moreover, the local dielectric polarized fields exist at the continuous heterointerfaces between 2 D MXene and r GO further improve the capacity of microwave loss. Hence, the synthesized composite film exhibits excellent microwave absorption property with a maximum reflection loss value of-54.1 d B at 13.28 GHz. The electromagnetic synergy strategy is expected to guide future exploration of high-efficiency MXene-based microwave absorption materials.
    • 李辉; 朱刚; 张建卫; 康昆勇; 杜官本; 李园园; 孙呵
    • 摘要: MXene因其独特的类石墨烯二维层状结构,优异的电学、光学以及热力学性能,且拥有极大的比表面积、优异的亲水性和丰富可调的表面官能团,作为金属及其氧化物的新型载体为纳米复合材料的微观结构增强设计提供了有利条件,以更好地发挥界面效应。然而,二维MXene存在片层易自主堆叠、纳米金属及其氧化物在MXene载体中的几何分布和复合构型难以精准调控、复合材料的界面结合较弱等难题,导致不能最大化发挥不同组分之间的协同、耦合和多功能响应机制。尤其是对于具有显著本征功能特性(包括导电导热性能和力学性能)的MXene纳米载体,其优异性能难以充分体现,显著影响其复合材料的综合性能。针对上述问题,国内外对二维MXene作为载体负载纳米金属及其氧化物构筑高性能复合材料已开展了初步的探索,相关研究成果已被大量应用于能量存储、光催化、电磁屏蔽、微波吸收、超级电容器等前沿领域。为此,本文重点综述了二维MXene负载金属及其氧化物纳米复合材料的主要制备方法、微观结构和功能特性,归纳了其在能量存储、微波吸收等方面的具体应用及增强机理,指出了目前研究存在的短板,并展望了未来的研究方向及其应用前景,以期为新型MXene基纳米复合材料微观结构调控与性能的优化设计提供坚实的理论和实验基础。
    • 刘爱萍; 刘耿君; 李雅欣; 王海燕
    • 摘要: 目的:近年来,MXene作为一种新型二维(2D)纳米材料,因其优异的性能而被广泛研究用作纳米递药平台。为了探索其新的表面改性方式和抗乳腺癌作用,我们构建了DOX@Ti3C2@Au-PEG纳米复合药物递送系统。方法:采用金纳米颗粒(Au NPs)对Ti3C2进行改性,引入巯基聚乙二醇醛基(SH-PEG-CHO)提高水溶性,同时负载化疗药物阿霉素(DOX),制备DOX@Ti3C2@Au-PEG纳米复合药物递送系统,进行表征验证其成功制备,并进一步研究其光热性能和抗乳腺癌作用。结果:Ti3C2被成功刻蚀成单层薄片,Au NPs在其表面均匀散在分布,平均尺寸约为20 nm。Ti3C2@Au纳米复合材料具有良好的光热升温性能和极低的细胞毒性。细胞试验证明,DOX@Ti3C2@Au-PEG纳米复合体系取得了最佳的光热治疗(PTT)协同化疗的抗乳腺癌效果。结论:成功构建基于Au纳米粒子修饰MXene的药物递送体系DOX@Ti3C2@Au-PEG,其展现出良好的光热升温性能及协同化疗的抗乳腺癌效果,值得进一步研究。
    • Wei Zheng; Joseph Halim; Per O.Å.Persson; Johanna Rosen; Michel W.Barsoum
    • 摘要: MXene-based aqueous symmetric supercapacitors(SSCs)are attractive due to their good rate performances and green nature.However,it remains a challenge to reach voltages much over 1.2 V,which significantly diminishes their energy density.Herein,we report on Mo_(1.33)CTz MXene-based SSCs possessing high voltages in a 19.5 M LiCl electrolyte.Benefiting from the vacancy-rich structure and high stable potential window of Mo_(1.33)CTz,the obtained SSCs deliver a maximum energy density of>38.2 mWh cm^(-3) at a power density of 196.6 mW cm^(-3) under an operating voltage of 1.4 V,along with excellent rate performance and impressive cycling stability.This highly concentrated LiCl electrolyte is also applicable to Ti_(3)C_(2)Tz,the most widely studied MXene,achieving a maximum energy density of>41.3 mWh cm^(-3) at a power density of 165.2 mW cm^(-3) with an operating voltage of 1.8 V.The drop in energy density with increasing power in the Ti_(3)C_(2)Tz cells was steeper than for the Mo-based cells.This work provides a roadmap to develop superior SSCs with high voltages and high energy densities.
  • 查看更多

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号