您现在的位置: 首页> 研究主题> graphene

graphene

graphene的相关文献在2008年到2022年内共计252篇,主要集中在化学、一般工业技术、肿瘤学 等领域,其中期刊论文212篇、专利文献40篇;相关期刊64种,包括中国科学、中国科学、能源化学:英文版等; graphene的相关文献由938位作者贡献,包括伍松陵、孙长坡、柴成梁等。

graphene—发文量

期刊论文>

论文:212 占比:84.13%

专利文献>

论文:40 占比:15.87%

总计:252篇

graphene—发文趋势图

graphene

-研究学者

  • 伍松陵
  • 孙长坡
  • 柴成梁
  • 王峻
  • 白小娟
  • 罗晓宏
  • Eugene Kogan
  • Mohammed Khenfouch
  • Yu Liu
  • 杨为佑
  • 期刊论文
  • 专利文献

搜索

排序:

年份

期刊

    • Haiyan He; Yuxian Chen; Cuizhen Yang; Lu Yang; Quanguo Jiang; Huajie Huang
    • 摘要: The technique of electrocatalytic hydrogen evolution reaction (HER) represents a development trend of clean energy generation and conversion,while the electrode catalysts are bound to be the core unit in the electrochemical HER system.Herein,we demonstrate a bottom-up approach to the construction of three-dimensional (3D) interconnected ternary nanoarchitecture originated from Ti_(3)C_(2)T_(x)MXene,graphitic carbon nitride nanosheets and graphene (MX/CN/RGO) through a convenient co-assembly process.By virtue of the 3D porous frameworks with ultrathin walls,large specific surface areas,optimized electronic structures,high electric conductivity,the resulting MX/CN/RGO nanoarchitecture expresses an exceptional HER performance with a low onset potential of only 38 m V,a small Tafel slop of 76 m V dec^(-1) as well as long lifespan,all of which are more competitive than those of the bare Ti_(3)C_(2)T_(x),g-C_(3)N_(4),graphene as well as binary MX/RGO and CN/RGO electrocatalysts.Theoretical simulations further verify that the ternary MX/CN/RGO nanoarchitecture with ameliorative band structure is able to facilitate the electron transport and meanwhile offer multistage catalytically active sites,thereby guaranteeing rapid HER kinetics during the electrocatalytic process.
    • Xiao Li; Zhengchen Wu; Wenbin You; Liting Yang; Renchao Che
    • 摘要: MXene, as a rising star of two-dimensional(2 D) materials, has been widely applied in fields of microwave absorption and electromagnetic shielding to cope with the arrival of the 5 G era. However, challenges arise due to the excessively high permittivity and the difficulty of surface modification of few-layered MXenes severely, which infect the microwave absorption performance. Herein, for the first time, a carefully designed and optimized electrostatic selfassembly strategy to fabricate magnetized MXene-r GO/Co Ni film was reported. Inside the synthesized composite film, r GO nanosheets decorated with highly dispersed Co Ni nanoparticles are interclacted into MXene layers, which effectively suppresses the originally self-restacked of MXene nanosheets, resulting in a reduction of high permittivity. In addition, owing to the strong magnetic coupling between the magnetic Fe Co alloy nanoparticles on the r GO substrate, the entire MXener GO/Co Ni film exhibits a strong magnetic loss capability. Moreover, the local dielectric polarized fields exist at the continuous heterointerfaces between 2 D MXene and r GO further improve the capacity of microwave loss. Hence, the synthesized composite film exhibits excellent microwave absorption property with a maximum reflection loss value of-54.1 d B at 13.28 GHz. The electromagnetic synergy strategy is expected to guide future exploration of high-efficiency MXene-based microwave absorption materials.
    • Shi-Xin Wang; Yu-Bao Lu; Xue-Xi Wang; Yan Wang; Yu-Jun Song; Xiao Wang; Munkhtuya Nyamgerelt
    • 摘要: Graphene and graphene-based materials have the ability to induce stem cells to differentiate into neurons,which is necessary to overcome the current problems faced in the clinical treatment of spinal cord injury.This review summarizes the advantages of graphene and graphene-based materials(in particular,composite materials)in axonal repair after spinal cord injury.These materials have good histocompatibility,and mechanical and adsorption properties that can be targeted to improve the environment of axonal regeneration.They also have good conductivity,which allows them to make full use of electrical nerve signal stimulation in spinal cord tissue to promote axonal regeneration.Furthermore,they can be used as carriers of seed cells,trophic factors,and drugs in nerve tissue engineering scaffolds to provide a basis for constructing a local microenvironment after spinal cord injury.However,to achieve clinical adoption of graphene and graphene-based materials for the repair of spinal cord injury,further research is needed to reduce their toxicity.
    • Zhiqiu Hu; Shuai Xie; Yue Guo; Yadong Ye; Jing Zhang; Song Jin; Hengxing Ji
    • 摘要: Al-S batteries are promising next generation energy storage devices due to their high theoretical energy density(1340 Wh kg^(-1)),low cost,and safe operation.However,the electrochemical performance of Al-S batteries suffers poor reversibility owing to slow kinetic processes determined by the difficulty of reversible conversion between Al and S.Here,we proposed a single-atom catalysts comprising Co atoms embedded in a nitrogen-doped graphene(Co NG)as an electrochemical catalyst in the sulfur cathode that renders a reduced discharge-charge voltage hysteresis and improved sulfur utilization in the cathode.The structural and electrochemical analyses suggest that the Co NG facilitated both the formation and oxidation of Al S;during the electrochemical reactions of the sulfur species.Consequently,the Co NG-S composite can deliver a considerably reduced voltage hysteresis of 0.76 V and a reversible specific capacity of 1631 m Ah g^(-1) at 0.2 A g^(-1) with a sulfur utilization of more than 97%.
    • C.Rebolledo Espinoza; D.A.Ryndyk; A.Dianat; R.Gutierrez; G.Cuniberti
    • 摘要: Chemical modification and vertical stacking of two-dimensional materials are promising techniques for new nanoelectronic devices. We present Density Functional Tight Binding(DFTB) calculations of a field-effect device,based on lateral and vertical heterostructures of 2D materials. The device consists of a phosphorene channel protected by graphene sheets, which work as contacts and are divided into the source and drain by local hydrogenation of graphene, which gives insulating graphane. In this device composed of only 3 layers, single sheets of graphene-graphane can work as both leads and oxide gate, while also acting as protective layers for a phosphorene channel. We show how for perfect vd W heterostructures of graphane/phosphorene/graphane and graphene/phosphorene/graphene the Schottky barrier is deeply influenced by normal electric fields, and we characterize electronic transport of such a device. Finally, we characterize phosphorene channel doping and defects, which, at very high densities in the transport direction, enables transport inside the phosphorene bandgap.
    • Xuemin Zhang; Changling Yan; Jinghang Yang; Chao Pang; Yunzhen Yue; Chunhong Zeng; Baoshun Zhang
    • 摘要: GaN has been widely used in the fabrication of ultraviolet photodetectors because of its outstanding properties.In this paper,we report a graphene–GaN nanorod heterostructure photodetector with fast photoresponse in the UV range.GaN nanorods were fabricated by a combination mode of dry etching and wet etching.Furthermore,a graphene–GaN nanorod heterostructure ultraviolet detector was fabricated and its photoelectric properties were measured.The device exhibits a fast photoresponse in the UV range.The rising time and falling time of the transient response were 13 and 8 ms,respectively.A high photovoltaic responsivity up to 13.9 A/W and external quantum efficiency up to 479%were realized at the UV range.The specific detectivity D*=1.44×10^(10) Jones was obtained at–1 V bias in ambient conditions.The spectral response was measured and the highest response was observed at the 360 nm band.
    • Jiacheng Lin; Tao Lin; Xuefeng Yin; Xue Cai; Xiaoyao Wei; Neng Zhang
    • 摘要: An aerogel electrode composed of conductive active materials based on nanocellulose aerogels can absorb more electrolytes,as well as enhance electron transport and ion diffusion channels.In the present study,aerogels with high strength were successfully prepared using 2,2,6,6-tetramethyl-1-piperidinyloxy free radical(TEMPO)-oxidized cellulose nanofibrils(CNF)as a raw material and polyethyleneimine(PEI)as a crosslinking agent.Simultaneously,functional electrode materials were prepared via self-assembly.Based on our findings,PEI can significantly improve the water and solvent solubility and enhance the wet strength and shape recovery ability of CNF aerogels.Meanwhile,the minimum density of the aerogel reached 0.0160 g/cm3,the maximum porosity was approximately 98.5%,and the maximum stress approximated 0.02 MPa.Furthermore,electrochemical tests revealed that after self-assembly of reduced graphene oxide(RGO)and polyaniline(PANI)solution,the mass specific capacitance of the functional composite aerogel was approximately 92 F/g and exhibited good chargedischarge performance.
    • 邢文倩; 胡建梅; 张煊
    • 摘要: As a group of the most notorious carcinogens,N-nitrosamines(NAs)are highly toxic and usually involved in healthy issue of human daily life.An electrochemical sensor for N-nitrosodiphenylamine(NDPhA)detection was constructed based on graphene electrode material.The graphene was facilely obtained by direct reduction of graphene oxide(GO)with hydrazine hydrate,and further coated on the surface of the glassy carbon electrode(GCE)to fabricate the electrochemical sensor for NDPhA analysis in food samples.The present sensor showed excellent sensitivity and selectivity for the electrochemical determination of NDPhA under a reduction manner with the detection limit of 0.6μmol/L.It was also successfully used in beer and ham food samples with satisfactory recovery results.
    • Chao Zeng; Hua Lu; Dong Mao; Yueqing Du; He Hua; Wei Zhao; Jianlin Zhao
    • 摘要: Metasurfaces,with extremely exotic capabilities to manipulate electromagnetic(EM)waves,have derived a plethora of advanced metadevices with intriguing functionalities.Tremendous endeavors have been mainly devoted to the static metasurfaces and metadevices,where the functionalities cannot be actively tuned in situ post-fabrication.Due to the in-trinsic advantage of active tunability by external stimulus,graphene has been successively demonstrated as a favorable candidate to empower metasurfaces with remarkably dynamic tunability,and their recent advances are propelling the EM wave manipulations to a new height:from static to dynamic.Here,we review the recent progress on dynamic metasur-faces and metadevices enabled by graphene with the focus on electrically-controlled dynamic manipulation of the EM waves covering the mid-infrared,terahertz,and microwave regimes.The fundamentals of graphene,including basic ma-terial properties and plasmons,are first discussed.Then,graphene-empowered dynamic metasurfaces and met-adevices are divided into two categories,i.e.,metasurfaces with building blocks of structured graphene and hybrid metasurfaces integrated with graphene,and their recent advances in dynamic spectrum manipulation,wavefront shap-ing,polarization control,and frequency conversion in near/far fields and global/local ways are elaborated.In the end,we summarize the progress,outline the remaining challenges,and prospect the potential future developments.
    • Pablo Ares; Kostya S.Novoselov
    • 摘要: The isolation of the first two-dimensional material, graphene-a monolayer of carbon atoms arranged in a hexagonal lattice-opened new exciting opportunities in the field of condensed matter physics and materials. Its isolation and subsequent studies demonstrated that it was possible to obtain sheets of atomically thin crystals and that these were stable, and they also began to show its outstanding properties, thus opening the door to a whole new family of materials, known as two-dimensional materials or 2D materials. The great interest in different 2D materials is motivated by the variety of properties they show, being candidates for numerous applications.Additionally, the combination of 2D crystals allows the assembly of composite, on-demand materials, known as van der Waals heterostructures, which take advantage of the properties of those materials to create functionalities that otherwise would not be accessible. For example, the combination of 2D materials, which can be done with high precision, is opening up opportunities for the study of new challenges in fundamental physics and novel applications. Here we review the latest fundamental discoveries in the area of 2D materials and offer a perspective on the future of the field.
  • 查看更多

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号