您现在的位置: 首页> 研究主题> 非线性预测控制

非线性预测控制

非线性预测控制的相关文献在1995年到2022年内共计141篇,主要集中在自动化技术、计算机技术、电工技术、武器工业 等领域,其中期刊论文98篇、会议论文16篇、专利文献1555796篇;相关期刊61种,包括中国科学技术大学学报、南京航空航天大学学报、电气传动等; 相关会议15种,包括第二十二届中国过程控制会议、第27届中国控制会议、第二十四届中国控制会议等;非线性预测控制的相关文献由293位作者贡献,包括黄德先、吴刚、赵均等。

非线性预测控制—发文量

期刊论文>

论文:98 占比:0.01%

会议论文>

论文:16 占比:0.00%

专利文献>

论文:1555796 占比:99.99%

总计:1555910篇

非线性预测控制—发文趋势图

非线性预测控制

-研究学者

  • 黄德先
  • 吴刚
  • 赵均
  • 钱积新
  • 陈薇
  • 何德峰
  • 王平
  • 田学民
  • 郑涛
  • 俞立
  • 期刊论文
  • 会议论文
  • 专利文献

搜索

排序:

年份

    • 谭惠东; 李天松; 莫雄; 卢艳菊; 严一超
    • 摘要: 针对无人机控制性能易受风扰影响的情况,设计了一种非线性预测PID控制算法.建立无人机高度与姿态角直接受PID参数控制的动力学模型,采用NNI与NNC复合神经网络对下一时刻无人机所受荷载进行非线性预测,并设计了NMPC-PID控制算法.仿真结果表明,相较于传统PID控制算法,NMPC-PID控制算法在鲁棒性、抗干扰能力方面具有明显优势.实际风扰情况下无人机悬停实验数据分析表明,采用NMPC-PID控制算法的无人机具有能够适应风速变化的特点.
    • 柴青; 刘旭东; 罗巨龙; 胡宾
    • 摘要: The fast current tracking control problem for permanent magnet synchronous motor(PMSM)with disturbance was studied. Firstly,according to the nonlinear predictive control principle,and considering the disturbance of the motor,such as the uncertainties of the model and the parameters,the current controller for PMSM was designed. Then,the disturbance observer was designed based on model reference adaptive method,and the estimated disturbance was used for the feed-forward control.Finally,the simulation was complemented,and the results show that the designed composite controller can realize the fast current tracking control,and it has strong robustness under the parameter variations and load torque disturbance.%主要研究永磁同步电机(PMSM)在扰动下的电流快速跟踪控制问题.首先,基于非线性广义模型预测控制原理,考虑电机实际运行中的模型和参数不确定性等扰动,设计PMSM电流控制器;然后,利用模型参考自适应方法设计了系统扰动观测器,并将估计的扰动量用于预测控制器的前馈补偿控制;最后,完成了仿真验证,结果表明,所提电流复合控制方法能实现电流的快速跟踪控制,而且在电机参数变化、负载扰动等状况下均具有较强的鲁棒性.
    • 赵明; 梁俊宇; 范赫; 王培红
    • 摘要: 超超临界直流炉机组协调控制系统存在非线性、强耦合等特性,常规P ID控制器较难获取满意的控制效果.提出了一种非线性预测控制方法,将直流炉机理模型作为预测模型,利用二进制编码的免疫优化算法在线滚动优化得到最优控制序列,给出当前时刻最优的控制量并作用于对象.通过对超超临界机组负荷控制模型的试验仿真,表明该非线性优化预测控制方法的有效性,为超超临界协调控制系统的设计提供参考.
    • 散齐国; 周建中; 郑阳; 许颜贺; 张云程; 张楚
    • 摘要: 调速系统是抽水蓄能机组频率及出力控制的主要部件,其控制性能及控制品质对于工况变化频繁,在电网中担任削峰填谷任务的抽水蓄能机组尤为重要.本文针对传统抽蓄机组的PID控制器中控制参数受工况影响大,控制器缺乏状态预测能力等缺点,提出一种适用于抽蓄机组调速系统不同工况的快速非线性预测控制方法.该方法应用抽蓄机组全特性曲线作为水泵水轮机模型,考虑压力引水管道的水击现象,利用模糊PID控制与预测控制的滚动状态预测原理计算得到调速器控制信号,使得调速器在根据运行工况精确控制机组频率与出力的同时,保证了控制计算的实时性.通过以某抽水蓄能电站实际资料进行抽水蓄能机组发电方向开机和负荷调节动态过程仿真,结果表明该预测控制方法较传统控制方式效果优越.%Turbine governing system is the major part for rotating speed and output mechanical power control.Its control performance is paramount for the pumped storage units that undertake the tasks of peak load shifting.To overcome the shortcomings of conventional PID control method in its weakness of parameters seriously affected by working conditions and of its limited performance in state prediction,this paper proposed a fast nonlinear predictive control method which is suitable for the power output adjusting case of the governing system of pumping storage turbines.This control strategy puts the complete characteristic curves of the pump turbine which has been widely recognized in the field into application and takes account of the water-hammer effect of the pressure pipeline.It calculates the control signal based on the integration of fuzzy PID control and the model predictive control,which makes the governor precisely control both the speed and power of the unit with its computational speed guaranteed.The proposed predictive control method and the conventional PID method along with fuzzy PID method have been applied under both the start-up and load schedule conditions which are simulated according to the measured data of a pumping storage unit.The simulation result indicated the preponderance of the proposed control compared with the conventional control.
    • 王军; 黄芬芍
    • 摘要: 开关电源作为非线性时变动态系统,其数学建模研究一直是实现开关电源高性能控制的热点和难点问题.该文首先推导了时变负载情况下开关电源小信号模型;然后,利用RBF神经网络进行动态负载下开关电源的建模;最后,结合模型预测控制技术进行动负载情况下开关电源的非显式预测控制研究.仿真结果表明,基于RBF神经网络的预测控制技术可以大大降低由于负载和输入电压等变化对电源供电品质造成的影响,可以获得比数字PID控制和线性预测控制更好的控制性能.%Switching power converter as a nonlinear dynamic systems,mathematical modeling study has been a hot and difficult problems to achieve high-performance switching power supply control.In this paper,the small signal model of switching power supply under varying load conditions is derived at firstly.Then,the RBF neural network based modeling for dynamic load switching power supply is studied.Finally,non-explicit predictive control for switching power supply under dynamic load conditions is researched by combining the RBF neural network and nonlinear predictive control.The simulation results show that the RBF neural network based predictive control technology can greatly reduce the quality influence of the power supplying with load or input voltage varying,and can obtain higher control performance than the digital PID control and linear predictive control.
    • 朱燎原; 张小艳; 赵均; 徐祖华
    • 摘要: 当精馏塔存在如进料流量、进料成分扰动,或是负荷发生大范围扰动变化时,常规控制器难以保持控制品质.本文提出了一种基于机理模型的精馏塔组分非线性预测控制方法;针对精馏塔组分不能在线测量的问题设计了扩展卡尔曼滤波器,使用可测的状态温度估计组分,并结合慢频的分析化验值对组分进行联合校正.仿真结果表明了该算法的有效性,在系统存在失配或进料扰动的情况下,可以取得良好的控制效果.%When there exist disturbances,e.g.,the fractionator feed and components or large load,it is difficult for conventional controller to exhibit better performance.This paper presents a nonlinear predictive control algorithm for distillation component via mechanism model.Aiming at the problem that components cannot be online measured,the extended Kalman filter and accessible temperature are utilized to estimate components,which is further updated by combining with laboratory analysis of the low frequency value.The simulation results show that the proposed algorithm can attain better control performance for model mismatch or feed disturbances.
    • 彭方平; 欧阳志刚; 展凯; 刘良
    • 摘要: 本文基于非线性模型预测控制方法,从理论上分析了债务陷阱的发生机制.研究结果表明,当负债处于较低水平时,经济表现为债务驱动型,而随着债务水平不断上升,当负债率超过某一阈值后,出现负债率上升和实体经济下行的背离走势,从而经济陷入债务陷阱.本文进一步基于企业数据实证研究证实了上述理论分析,并表明,从企业层面来看,我国已落入债务陷阱状态.上述研究结果所派生的政策含义是,数量型货币刺激政策并无益于解决当前经济增速下滑问题,要重在通过降息、资本重组和发展股权市场等方式来去杠杆和刺激投资.
    • 杜昕; 刘会龙; 黄悦琛
    • 摘要: 针对目前大多数跳跃式再入制导方案在初次再入段采用数值预测⁃校正算法存在的计算量较大、在线应用困难的问题,提出了一种新的跳跃式再入标称轨迹制导方案。整条标称轨迹通过离线轨迹规划算法得到。在初次再入段,采用非线性预测控制算法来跟踪阻力加速度⁃能量剖面,将预测跟踪误差表示为依赖于控制量的截断泰勒展开式,然后寻找使得特定目标函数最小的控制量。进入二次再入段,采用类似于阿波罗末段制导的线性反馈跟踪方式,PID控制器系数通过插值得到。最后,在考虑各种误差的情况下进行了500次蒙特卡洛仿真,仿真结果表明制导律的精度较高,鲁棒性较好。%In most of the mature skip entry guidance schemes, such as PredGuid and NSEG for CEV reentry, numerical predictor⁃corrector algorithm is used for the guidance of the first entry phase. Nu⁃merical predictor⁃corrector algorithm is of high accuracy and is flexible and autonomous, but it is too computation intensive to be applied online. A new guidance scheme using a reference trajectory for skip entry was proposed in this paper. The whole reference trajectory was obtained by off⁃line trajec⁃tory planning algorithm. In the first reentry phase, a nonlinear predictive control algorithm is used to track the drag⁃versus⁃energy profile. The predicted tracking error was expressed as a truncated Tay⁃lor series dependent on the control. The control was then selected to minimize a cost function related to the predicted error. In the second reentry phase, the reference trajectory was tracked by a linear feedback control algorithm which was used in Apollo final phase. The gain coefficient of PID control⁃ler was obtained by interpolation. Finally, the new guidance scheme was tested by the simulation of 500 entry cases with all kinds of errors. Simulation results indicate that the new guidance has high accuracy and notable robustness.
    • 覃业梅; 彭辉; 阮文杰
    • 摘要: 为了充分描述磁悬浮球系统具有非线性、开环不稳定性及响应快速性等特性,建立一个带线性函数权重的RBF-ARX(linear functional weight RBF networks-based ARX model,LFWRBF-ARX)模型.与一般的RBF-ARX模型不同之处在于,它引入1个与工作点状态相关的局部线性结构作为RBF网络输出层的权值.该模型随系统工作点的变化而变化,固定工作点时为局部线性ARX模型,当工作点变化时为全局非线性ARX模型.根据该模型的结构特点,采用结构化非线性参数优化方法(structured nonlinear parameter optimization method,SNPOM)来辨识模型的结构及线性、非线性参数.然后,以辨识的模型为基础,根据模型的局部线性及全局非线性特征设计预测控制器.仿真结果表明:以该建模方法建立的模型能很好地局部和全局描述磁悬浮球系统的动态特性,并能实现小球的稳定悬浮控制,比以一般ARX模型、RBF-ARX模型为基础的控制效果更好.
    • 王利华; 周荣富; 吴鹏松
    • 摘要: 模型预测控制算法采用了多步预测、滚动优化和反馈校正等控制策略,因而具有控制效果好、鲁棒性强、对模型精确性要求不高,它和非线性预测控制比较有各自的优缺点,本文就它们如何在电力电子中的应用做了系统的分析和阐述,其优越的性能在工业控制中已经得到了广泛的应用,最后对预测控制在电力电子中的应用前景做出了展望。
  • 查看更多

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号