您现在的位置: 首页> 研究主题> 制浆废水

制浆废水

制浆废水的相关文献在1987年到2022年内共计209篇,主要集中在废物处理与综合利用、轻工业、手工业、工业经济 等领域,其中期刊论文120篇、会议论文26篇、专利文献121903篇;相关期刊55种,包括天津科技大学学报、林产化学与工业、四川农业大学学报等; 相关会议18种,包括中国造纸学会第十七届学术年会、江苏省造纸学会第十三届学术年会、中国造纸学会第十六届学术年会等;制浆废水的相关文献由339位作者贡献,包括李友明、雷利荣、房桂干等。

制浆废水—发文量

期刊论文>

论文:120 占比:0.10%

会议论文>

论文:26 占比:0.02%

专利文献>

论文:121903 占比:99.88%

总计:122049篇

制浆废水—发文趋势图

制浆废水

-研究学者

  • 李友明
  • 雷利荣
  • 房桂干
  • 施英乔
  • 丁来保
  • 詹怀宇
  • 陈洪雷
  • 刘廷志
  • 崔延龄
  • 陈元彩
  • 期刊论文
  • 会议论文
  • 专利文献

搜索

排序:

年份

    • 郭怡璇; 刘明友; 李劲松
    • 摘要: 本研究以广西某造纸厂制浆出水为研究对象,采用Fenton氧化法及臭氧氧化法进行处理,以色度和COD的去除率为指标,分别对其工艺参数进行了优化,并对比分析了两种方法的去除效果。结果表明,Fenton反应的最佳工艺条件为:初始pH值3,反应时间1.5 h,H_(2)O_(2)/Fe^(2+)摩尔比3∶1,此时废水色度去除率达97.43%,COD_(Cr)去除率达92.71%。臭氧氧化反应的最佳工艺条件为:初始pH值8,反应时间20 min,臭氧用量6%,搅拌速度700 r/min,此时废水色度去除率达98.35%,COD_(Cr)去除率达63.78%。臭氧反应比Fenton反应有更好的色度去除效果,并且有无需调节pH值、无二次污染的优点,处理后的废水可以考虑用于造纸厂的水循环系统中。
    • 摘要: 聚焦技术与装备12禁废令全面实施后,纸企广开思路,多措并举,解决纤维原料来源问题。请您从开发多种原料资源的角度给纸企提一些建议。外废进口停止后,增加纤维原料供应来源迫在眉睫,个人认为应该尝试以下几种主要方式:一是利用生产高得率浆。现在许多纸厂已经使用,或正在准备往这个方向转型。但高得率浆也存在一些问题需要妥善解决,例如高得率浆保留了很多木素,可能会引起纸张返黄、强度下降等问题,同时制浆废水排放也要多加注意。二是提高国内废纸回收利用率。目前国家提倡垃圾分类,如果这一政策能够有效实施,废纸回收率也会相应提高。三是境外投资建厂,将美废制成再生纸浆后再进口到国内补充原料不足。目前许多大型纸企都已在国外建厂,这可能是目前最好的长纤维获取渠道之一。此外,国外部分企业也意识到了中国市场的需求,有些美国企业利用其拥有大量废纸资源的优势,也在生产这种再生纸浆并出口到中国。
    • 路德胜; 毕淑英; 谢益民
    • 摘要: 采用Al_(2)(SO_(4))_(3)和Ca(OH)_(2)组合絮凝体系联合曝气生物滤池(BAF)对麦草生物化学机械浆(Bio-CMP)制浆废水进行了处理。首先分析了其絮凝机理及影响絮凝效果的因素,结果表明:Al_(2)(SO_(4))_(3)和Ca(OH)_(2)用量分别为1 g/L和1.25 g/L,搅拌25 min,搅拌速率60 r/min,温度25°C,pH值7~8时,废水的絮凝处理效果最好。曝气生物滤池处理过程中,第7天时,固体菌S-1和液体菌L-1对废水的COD_(Cr)去除率最高,分别为74.6%和64.5%。经固体菌S-1处理后的废水COD_(Cr)为200 mg/L,达到了造纸厂废水回用的水平。
    • 张娅
    • 摘要: 分析了AOX减排的重要性,介绍了制浆项目漂白工艺的发展历程,以及制浆废水中AOX排放特征,以重庆市某大型制浆企业为例,分析了该企业技改前后的AOX排放变化.
    • 莫立焕; 杨爽; 谈金强; 李军; 徐峻
    • 摘要: 以铁粉、活性炭和黏土为主要原料制备规整化铁炭填料颗粒,并对填料制备工艺及其处理蔗渣制浆废水工艺进行优化探讨.结果表明,规整化铁炭填料最佳制备工艺条件为铁炭比1∶1,黏土质量比25%,氯化铵添加量0.5%,焙烧温度400°C,焙烧时间2h;在此条件下制备的规整化铁炭填料在最优实验条件(pH值2.5,处理时间90 min,填料用量30 g/L,曝气量0.3 m3/L)下对蔗渣制浆废水进行深度处理,CODCr和TOC的去除率分别达69.9%和70.8%,规整化铁炭填料在处理废水前后基本结构骨架没有变化,且其表面未发生钝化和活性组分流失.%In this paper,the regularized iron-carbon micro-electrolytic spherical fillers were prepared using iron powder,activated carbon and clay as the main components.Four independent variables including the iron to carbon ratio,the clay mass ratio,ammonium chloride mass ratio and calcinating time were optimized.The results showed that the regularized iron-carbon fillers prepared under the optimized preparation conditions (the iron to carbon ratio 1 ∶ 1,the clay mass ratio 25%,ammonimn chloride mass ratio 0.5%,calcinating 2 hours in 400 °C) were used in the advanced treatment of bagasse pulping wastewater under optimal treatment process (the pH value was 2.5,the addition amount of Fe-C fillers were 30 g/L,the aeration flow rate was 0.3 m3/h,the reaction time was 90 min).The removal rate of CODcr and TOC was 69.9% and 70.8% respectively.The basic structure of the filler after using in wastewater treatment was not changed and the there was no any loss of active components on its surface.
    • 周虹佳; 刘飞; 周明; 仲兆祥; 邢卫红
    • 摘要: Heterogeneous Fenton process is mainly used to degrade wastewater COD.Compared to traditional Fenton process, heterogeneous Fenton can avoid the generation of iron sludge, while the utilization rate of H2O2 still need to be improved.In this work, two type of ceramic membranes assisted heterogeneous Fenton process were proposed.One membrane was used as H2O2 distributor, while another was used for separating and recycling the catalyst.Different catalysts and their COD degradation performance were investigated first.The adding dose and rate of H2O2 and permeate flux were optimized subsequently.The stability of the catalytic and the membrane fouling condition were finally evaluated.The results revealed that cubic Cu2O possessed the best COD degradation performance.When the reaction conditions were that Cu2O (1 g·L-1), H2O2 dosage (0.8 ml·L-1), wastewater permeability (137 L·m-2·h-1) and reaction temperature(30°C), the COD degradation amount of RO(Ⅰ)— RO(Ⅳ) were 11, 130, 291 and 417 mg·L-1.The utilization rate of H2O2 for RO(Ⅰ)—RO(Ⅳ) were 9%, 106%, 232% and 334%, the utilization efficiency of H2O2 exceeded 100% means there are chlorine free radicals play a role in COD degradation.The COD degradation amount increased linearly with increasing of Cl- concentration.The COD degradation rate had an increasing tendency with the decreasing of the permeability of separation membrane.In the 360 min reaction process, Cu2O catalyst may form a reversible cake layer on the surface of the membrane distributor.However, this cake layer has scarcely effect on the permeation resistance.The COD degradation were greater than 65% stably.Moreover, with the increase of conductivity in pulp wastewater, catalysts would become instability with more of Cu ion dissolution.In heterogeneous Fenton process, ceramic membrane can enhance the treatment efficiency to pulp waste water, which performed in increasing of the utilization rate of H2O2 and improving the stability in continuous operation process.%类Fenton工艺又称非均相Fenton工艺,主要用于降解废水COD,可避免传统Fenton工艺产生的铁泥问题,但双氧水利用率尚有待提高.采用1个陶瓷膜分布H2O2,另1个陶瓷膜分离催化剂,构成双膜促进的非均相Fenton新工艺,考察了不同催化剂对制浆废水中COD的降解效果,优化了H2O2进料速率和反应渗透通量,分析了催化剂的稳定性和陶瓷膜污染情况.结果表明,自制立方体结构的Cu2O对制浆废水中COD降解效果最佳,当Cu2O添加量为1g·L-1,H2O2加入量为0.8ml·L-1,反应温度为30°C,反应渗透通量为137L·m-2·h-1时,RO(Ⅰ)~RO(Ⅳ)4种废水的COD降解量分别为11、130、291和417mg·L-1,H2O2的利用率分别为9%、106%、232%、334%,H2O2利用率大于100%的主要原因是废水中大量的氯离子与铜催化剂作用产生氯自由基参与了降解反应,COD降解量与Cl-含量呈现线性关系,并且COD降解率随膜渗透通量的减小而增大.360min的连续运行表明陶瓷膜分布器在非均相Fenton反应过程中会形成可逆滤饼层,膜污染较小,COD降解率稳定保持在65%以上.随着制浆废水中盐浓度的增大,Cu2O催化剂稳定性变差,Cu离子的溶出量增大.陶瓷膜可以强化非均相Fenton工艺处理制浆废水效果,提高双氧水的利用率和连续运行的稳定性.
    • 敬双怡; 于治豪; 朱浩君; 李卫平; 于玲红
    • 摘要: AF-SMBBR combined process was used to treat pulping effluent to investigate the CODcr and SS removal effect when this process was in the stages of biofilm colonization and stable running after the success of biofilm colonization,and to explore the effects of hydraulic retention time (HRT),and dissolved oxygen (DO) concentration on COD removal rate.The results of experiment showed that under the operation condition that influent temperature was 18 ~ 28°C,pH value was 6.5 ~8,CODcr concentration was 11000 ~ 15000 mg/L,SS concentration was 20600 ~ 26600 mg/L,hydraulic retention time (HRT) was 8 days,effluent CODcr maitained in less than 400 mg/L,the average removal rate was up to 97%,effluent SS was stable in less than 350 mg/L,the average removal rate was up to 98%.%采用厌氧生物滤池(AF)-特异性移动床生物膜反应器(SMBBR)组合工艺处理制浆废水,考察该工艺挂膜阶段以及挂膜成功后稳定运行阶段对废水CODcr和SS的去除效果,并探究了稳定运行期水力停留时间(HRT)、溶解氧(DO)浓度两个因素对CODcr去除率的影响.试验结果表明,在水温18~28°C、进水pH值6.5~8.0、CODcr浓度11000~15000 mg/L、SS浓度20600~ 26600 mg/L、水力停留时间8d的操作条件下,出水CODcr稳定在400 mg/L以下,平均去除率高达97%;出水SS稳定在350 mg,/L以下,平均去除率高达98%.出水水质达到GB8978-1996《废水综合排放标准》国家三级排放标准,可排入城镇废水处理厂进行深度处理.
    • 莫立焕; 谈金强; 王聪聪; 徐峻; 李军
    • 摘要: 对单独臭氧氧化处理制浆废水与γ-Al2 O3催化臭氧深度处理制浆废水进行了对比研究,结果表明:γ-Al2 O3对臭氧具有一定的催化作用,能够显著提高废水的CODCr去除率;随着主要影响因素pH值、反应温度、臭氧浓度和催化剂用量的增加,CODCr去除率均先增大后降低;同时,γ-Al2 O3催化臭氧还能够有效地降低废水中AOX(可吸附有机卤化物)的含量;实验室条件下,处理30 min,AOX去除率可达80.4%.文中还采用扫描电镜对再生前后的γ-Al2 O3、采用UV和GC-MS对处理前后的废水进行分析,结果显示,γ-Al2 O3催化臭氧能大幅降低废水中的有机物种类和含量,并且能较好地降解难生物降解的有机物,其作为催化剂具有良好的稳定性,重复使用8次后,经过焙烧再生,仍可保持88.5%的催化活性.%In this paper , a comparison was carried out between the ozone oxidation and the γ-Al2 O3-catalyzed ozo-nation for the treatment of bagasse pulping effluent .The results show that (1) γ-Al2 O3 has a certain catalytic effect on ozone and can significantly improve the removal rate of COD Cr;(2) with the increase of pH value , reaction tem-perature, ozone concentration and catalyst dosage , the removal rate of CODCr first increases and then decreases;(3) the catalytic ozonation by γ-Al2O3 can also effectively remove the content of AOX (Absorbable Organic Halo-gen) in the pulping effluent; and (4) in laboratory conditions, the removal rate of AOX reaches 80.4% after a treatment for 30 min.Moreover, it is demonstrated by the UV and GC-MS results before and after the advanced treatment thatγ-Al2 O3-catalyzed ozonation can significantly reduce the type and content of organic matters in the ef -fluent and effectively degrade hard biodegradable organic matters;and that γ-Al2 O3 is of good stability and repeti-tion, concretely , after being reused for eight times , it still keeps 88.5%of the catalytic activity .
    • 王聪聪; 莫立焕; 杨珍; 李军; 徐峻; 谈金强
    • 摘要: 以γ-Al2 O3为载体,过渡金属离子Mn、Ni为活性组分,通过共浸渍法制备负载有二元金属氧化物的催化剂Mn-Ni/γ-Al2 O3,利用XRD、XRF和BET对催化剂进行了分析与表征.采用响应面法优化Mn-Ni/γ-Al2 O3催化臭氧深度处理制浆废水工艺,并考察了催化剂的稳定性和重复使用性能.结果表明:Mn、Ni成功负载到了γ-Al2 O3表面及内部孔道,负载后催化剂的粒径减小,比表面积、孔容和平均孔径分别降低了11.96%,16.48%和5.28%;在pH值8.7、催化剂用量9.2 g/L、臭氧质量浓度29.6 g/L的最佳工艺条件下,将Mn-Ni/γ-Al2 O3(Mn与Ni的物质的量比为6:4)用于催化臭氧深度处理废水,40°C恒温处理30 min后废水CODCr的去除率达75.1%,AOX去除率达85.98%;催化剂重复使用6次时,CODCr的去除率仍达70.6%,并且反应过程中Mn、Ni离子溶出量始终保持在1 mg/L以下,表明Mn-Ni/γ-Al2 O3具有较高的稳定性和较好的重复使用性能.%A loading binary metal oxide Mn-Ni/γ-Al2 O3 catalyst was synthesized withγ-Al2 O3 as support and with the transition metals Mn, Ni as active ingredients. The catalyst was characterized by XRD, XRF, BET. Then the catalyst was used for the ozonation advanced treatment of pulping effluent. The relationship between wastewater CODcr and affecting factors was established via the response surface analysis with Box-Behnken mathematical model. The results showed that the Mn and Ni were loaded on the surface and in the internal hole-channel successfully; After the load of these metals, the particle size decreased, and the specific surface area, pore volume and average pore size decreased by 11. 96%, 16. 48% and 5. 28% respectively. The optimal condition for treatment was initial pH 8. 7, catalyst dosage 9. 2 g/L and ozone concentration 29. 6 mg/L. Under this condition, the removal rates of CODCr and AOX with Mn-Ni/γ-Al2O3(mole ratio of Mn and Ni 6:4) as catalyst were 75. 1% and 85. 98%after 30 min treatment (40 °C). Furthermore, the removal rate for this catalyst still reached 70. 6% after being repeatedly used for 6 times. And the ionic releases of Mn and Ni was remained below 1 mg/L during the reaction, indicating of the high stability and good performance of the Mn-Ni/γ-Al2 O3 catalyst had for repeated use.
  • 查看更多

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号