您现在的位置: 首页> 研究主题> 遗传方差

遗传方差

遗传方差的相关文献在1989年到2020年内共计85篇,主要集中在农作物、畜牧、动物医学、狩猎、蚕、蜂、林业 等领域,其中期刊论文84篇、会议论文1篇、专利文献9774篇;相关期刊50种,包括种子、棉花学报、作物学报等; 相关会议1种,包括中国农学会水稻遗传育种国际学术讨论会等;遗传方差的相关文献由193位作者贡献,包括林文雄、梁义元、梁康迳等。

遗传方差—发文量

期刊论文>

论文:84 占比:0.85%

会议论文>

论文:1 占比:0.01%

专利文献>

论文:9774 占比:99.14%

总计:9859篇

遗传方差—发文趋势图

遗传方差

-研究学者

  • 林文雄
  • 梁义元
  • 梁康迳
  • 郭玉春
  • 何华勤
  • 李亚娟
  • 陈志雄
  • 陈芳育
  • 沈荔花
  • 朱军
  • 期刊论文
  • 会议论文
  • 专利文献

搜索

排序:

年份

    • 田蓉蓉; 李培富; 白天亮; 马帅国; 吕建东; 胡慧; 朱春艳; 李杰; 王震宇; 田蕾
    • 摘要: 为了解水稻生长发育过程中农艺性状的遗传变异及其对单株产量的影响,利用Bertone和越光为亲本构建回交群体,对群体株高、穗长、茎基粗、剑叶长、剑叶宽、单株分蘖数、单株有效穗数、单穗质量和单株产量9个性状进行测定.结果表明,上述9个性状均呈连续性变异,单株产量和单穗质量在2个回交群体中均表现出较高的变异;单株产量与单株分蘖数、单株有效穗数和单穗质量均呈极显著正相关,与株高、茎基粗均呈显著正相关.通过主成分分析将9个性状转换为5个主成分,累计贡献率为88.980%;结合主成分和逐步回归分析获得了单株产量、单穗质量、单株有效穗数、株高和剑叶长5个关键性状指标;通径分析发现,单穗质量对单株产量的直接作用最大,上述5个关键指标对单株产量的间接作用较小.遗传方差分析发现,不同性状的遗传方差分量组成差异很大,且不同分量占总方差的比例也不同,显性与环境互作方差是回交群体中主要的遗传方差来源.
    • 徐清乾; 吴成田; 许忠坤
    • 摘要: The eight clones of Chinese fir complete diallel crosses of 32-year-old forest's tree height,DBH and volume for test the advantages of hybrid and inbred fading effect analysis,and the combining ability variance and combining ability effect value were calculated.The result show that:true genetic variation exists in three traits,general combining ability, special combining ability,positive and negative cross effect variance all reached significant level,and volume to special combining ability of the genetic variance ratio (GVC)is maximum.Selected three excellent clones for hybridization and two growps of excellent clones for Bi-clonal seed orchard,and 19 combination of cross superior trees for second generation.%对杉木8个无性系全双列杂交组合的32年生成林的树高、胸径和材积作了杂交优势和自交衰退效应分析,并对配合力方差和配合力效应值进行了计算。得出如下结论:3个性状都存在真实的遗传变异,一般配合力、特殊配合力、正反交效应方差都达到显著水平,且材积以特殊配合力的遗传方差比(GVC)最大。评选出适于杂交的优良无性系3个,适于建立双系种子园的优良无性系2组,适于选作二代优树的优良杂交组合19个。
    • 莫旺成; 汤飞宇; 肖文俊
    • 摘要: Six upland cotton(Gossypium hirsutum L.) varieties (lines) with high fiber quality were used to create a genetic population according to a complete diallel cross design. The developmental genetic behavior of the dry matter weight of mid-summer bolls and their subtending leaves (boll-leaf system) was investigated by using additive-dominant developmental genetic models and corresponding statistical methods. The results showed that the dry weight of the leaf subtending the boll was mainly controlled by additive effects in the former half period of boll development, and by dominant effects in the latter half period. Boll shell weight was affected by additive and dominant effects in the whole developmental process, but additive effect genes mainly acted. Boll weight was mainly governed by dominant effects in the early-middle period, and by additive effects in the late period. The results of conditional genetic variance components indicated that net genetic effects for the dry weight of the leaf subtending the boll reached a peak at 38-45 days post anthesis. Meanwhile, the expression of additive genes closed. Gene expression for the boll shell weight was most active at 17-24 days and 38-45 days after flowering. The net dominant effects played major roles. The two summits of gene expression amounts for the boll weight appeared at 17-24 days and 31-38 days after flowering, and the dominant genes were expressed in larger amounts than the additive genes. From then on, the expression of genes decreased dramatically. The maximum of net genetic effects for the boll weight appeared earlier than those of the dry weight of the leaf subtending the boll and the boll shell weight, which was consistent with the observation of more dry matter accumulation in the boll shells of high quality upland cotton varieties than low-medium quality ones. Dominance correlation coefficients between the boll shell weight at diverse developmental stages and the boll weight finally attained were positive and significant at the 0.01 probability level.%应用加性-显性发育遗传模型及条件与非条件的统计分析方法,对6个高品质陆地棉品种(系)及其30个F1组合的伏桃与对位果枝叶的干物质质量进行了研究.非条件方差分析表明,果枝叶质量在棉铃体积增大期主要受加性效应控制,内部充实期主要受显性效应控制;铃壳质量在不同发育时期均以加性效应为主;铃重在前中期主要受显性效应控制,后期以加性效应为主.条件遗传分析表明,影响果枝叶质量的净遗传效应在铃龄38d至45 d达到高峰;控制铃壳质量的基因表达分别在铃龄17d至24 d和铃龄38d至45 d出现两个高峰;影响铃重性状的基因分别在铃龄17d至24 d和铃龄31d至38d出现两个表达活跃的高峰,此后基因的表达量急剧下降.遗传相关分析表明不同发育时期的铃壳质量均与最终铃重成极显著的加性正相关.
    • 朱正梅; 赵军华; 楼肖成; 吕学高
    • 摘要: 用混合线性(AD)模型和MINQUE(1)法对各性状遗传力、遗传方差分量及其占总表型变异的比率进行剖析。结果显示:各性状的大多数遗传效应值都达到显著(p≤0.05)或极显著水平(p≤0.01);各遗传方差分量的效应对表型方差贡献率大小不同;各性状狭义遗传力大小为总叶片数〉抽雄期〉散粉期=雄穗分枝〉吐丝期〉生物产量〉果穗鲜重〉穗位高〉秸秆鲜重〉果穗干重〉株高。
    • 张晓岗
    • 摘要: 在加性遗传模式和符合孟德尔定律(符合分离定律和独立分配定律,没有连锁遗传和基因互作)的条件下,推导集团混种群体自交后代的遗传变异大小:随着自交代数的增加,基因型概率发生改变,遗传方差增加.采用单个样本平均数的假设测验分析两两自交后代间遗传方差:25%自交后代间遗传方差符合自交后代的遗传方差受基因型概率改变影响的假设;75%自交后代间遗传方差不符合自交后代的遗传方差受基因型概率改变影响的假设.采用单个样本平均数的假设测验分析两两自交后代间遗传方差保持不变的假设:50%自交后代符合自交各代间遗传变异保持不变的假设;50%自交后代不符合自交后代的遗传变异保持不变的假设.集团混种群体自交后代的遗传变异大小,除了受到遗传距离保持不变和基因型概率改变的影响以外,还受到其他因素的影响.%In the conditions of the additive inheritance model and Mendel law, which answered for the law of independent assortment, and with no linkage inheritance or gene interaction, with the increase of the selling generations,the genetic variance increased, the genotypes probability also changed. T-test analyzes results.the 25% self progeny of mixed group accorded with the genetic variance to change,the 75% self progeny of mixed group did not accord with the genetic variance to change. Besides the unchanged genetic distance and the difference probability of genotype, the genetic variation of the mixed group self progeny was also affected by other factors, which needed further researches.
    • 张晓岗
    • 摘要: 遗传变异的研究是数量遗传学研究的重点.多基因假说是数量遗传学的基础,其要点是"各基因的作用是累加的".在加性遗传模式和符合孟德尔定律(符合分离定律和独立分配定律、没有连锁遗传和基因互作)的条件下,采用双单倍体技术分析遗传变异的"累加性",得到2个结论:①用遗传距离表示F2遗传变异的大小,推导多基因假说的"累加性"符合"代数和"(A=B+C).②用遗传方差表示F2遗传变异的大小,推导多基因假说的"累加性"符合"平方和"(∑a2=∑b2+∑c2).t-测验表明2个结论都是正确的.以多基因假说为基础提出加性遗传模式,加性遗传模式的重点是不同等位基因间的作用是"代数和",不是"平方和".用遗传方差表示F2遗传变异的大小,不符合加性遗传模式,不符合多基因假说.%Genetic variation was the focal point of the researches in quantitative genetics. The multiple- factor hypothesis was the basis of quantitative genetics. The key point of the multiple-factor hypothesis was the cumulative action of each gene effect. In the conditions of the additive inheritance model and Mendel law, which answered for the law of independent assortment, and with no linkage inheritance or gene interaction, with the technique of dihaploid,analysis of the cumulative action of the genetic variation had two results. ①The cumulative action was accorded with the algebraic sum(A=B+C)in the genetic distance to express the F2 value of the genetic variation. ②The cumulative action was accorded with the quadratic sum( ∑a2=∑b2+∑c2 )in the genetic variance to express the F2 value of the genetic variation, t-test proved that the two results were correct. The cumulative action was advanced on the basis of the multiple-factor hypothesis. The key point of the cumulative action was that the effect of the different allele was algebraic sum(A=B+C), was not the quadratic sum(∑a2=∑b2+∑c2). In the genetic variance to express the F2 value of the genetic variation the cumulative aetion and the muhiple-faetor hypothesis was not accorded.
    • 李亚娟; 房三虎; 张洪胜; 沈俊程; 刘向东
    • 摘要: 与二倍体水稻相比,同源四倍体水稻杂种具有强大的生物学优势,目前对同源四倍体水稻数量性状的遗传规律及存在较强优势的遗传基础还不清楚。此研究利用一套4×12不完全双列杂交的亲本和F12个世代的同源四倍体材料,采用加性—显性模型和统计分析方法,分析同源四倍体水稻农艺性状的遗传规律。结果表明,同源四倍体农艺性状受到遗传主效应与基因型×环境互作效应共同控制;其中株高、穗长以显性效应为主,剑叶宽以加性效应为主,有效穗数和剑叶长性状以显性×环境互作效应为主;株高、穗长和剑叶宽的HN和HB均分别比HNE和HBE大,表明这3个性状的选择效果受环境的影响较小;有效穗数和剑叶长的HN相对较小,HNE相对较大,说明这两个性状的选择效果因环境而不同。此研究为在杂种配制和后代选择中有效地利用同源四倍体新种质提供理论依据。
    • 石明亮; 薛林; 黄小兰; 胡加如; 陈国清; 陆虎华; 熊素华; 洪德林
    • 摘要: 探明新选育的自交系间的遗传差异和配合力潜力有助于评价其遗传基础并在此基础上进一步应用于育种工作.选用江苏沿江农业科学研究所导入热带、亚热带种质后新近育成的9个自交系,按Griffing双列杂交遗传设计第3种交配方法配制正反交,共72个F.杂交种,在江苏南通和南京两个地点对9个自交系4个性状的一般配合力效应和特殊配合力效应进行了分析,并对9个自交系的利用价值进行评价.结果表明,新选自交系间杂种F1单株粒重、穗长的变异中,非加性遗传方差大于加性遗传方差;穗粗,百粒体积的变异中,加性遗传方差大于非加性遗传方差.单株粒重、百粒体积性状一般配合力好的自交系是S7和S3;穗长一般配合力较好的自交系是S2和S9;穗粗一般配合力较好的自交系是S6、S2、S3和S8.综合4个性状计价,S3最好,其后依次为S2、S7、S5和S1.导入了热带种质的S9穗长一般配合力有所提高.所有性状的反交效应均不显著.
    • 摘要: 为了评估猪生产性能相关的基因组印记对遗传方差的相对重要性。调查了21209份大白猪的记录,总共分析了与生长、胴体成分和肉质相关的33个性状。瑞士的一个检测站记录了1997-2006年间的这些性状,以及包含15747份有记录的祖代系谱。每个动物都使用两因素遗传效应模型。
  • 查看更多

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号