首页> 外文期刊>Device and Materials Reliability, IEEE Transactions on >Review of Device and Reliability Physics of Dielectrics in Electrostatically Driven MEMS Devices
【24h】

Review of Device and Reliability Physics of Dielectrics in Electrostatically Driven MEMS Devices

机译:静电驱动MEMS器件中电介质的器件和可靠性物理综述

获取原文
获取原文并翻译 | 示例

摘要

After decades of improving semiconductor-device reliability, dielectric failure rates resulting from surface-charge accumulation, dielectric breakdown, and charge injection have been reduced to an almost imperceptible range. However, the influence of dielectric properties and behavior on device performance in microelectromechanical systems (MEMS) is still poorly understood and a substantial contributor to device failure. The difference is primarily due to two factors. First, the characteristic length scale and electrical stress of dielectrics in MEMS are often an order of magnitude or more than in semiconductor devices. Lateral dimensions of tens of micrometers increase the probability of including defect sites, and higher applied voltages increase the probability of dielectric breakdown. Second, dielectrics in MEMS are often designed to fulfill multiple functions, often with no equivalent in semiconductor devices. The use of dielectrics as structural material puts substantial emphasis on material properties other than the classic dielectric properties. The use of freestanding elements in MEMS causes large interfacial surfaces between the dielectric and air which in turn provides various charge trap mechanisms. The same surfaces, when allowed to come in contact, could lead to a failure mechanism called stiction, where the surfaces cannot be separated after contact. This paper provides a review of the most prevalent failure mechanisms resulting from the use of dielectrics in electrostatically driven MEMS devices and methods to characterize both their material properties and impact on reliability performance.
机译:经过数十年的提高,半导体器件的可靠性,由表面电荷积累,介电击穿和电荷注入引起的介电故障率已降低到几乎不可察觉的范围。但是,电介质性能和行为对微机电系统(MEMS)中设备性能的影响仍然知之甚少,并且是造成设备故障的重要原因。差异主要是由于两个因素。首先,MEMS中电介质的特征长度尺度和电应力通常比半导体器件高一个数量级或更多。几十微米的横向尺寸增加了包含缺陷部位的可能性,而更高的施加电压则增加了电介质击穿的可能性。其次,MEMS中的电介质通常被设计为实现多种功能,而半导体器件中通常没有这种功能。使用介电质作为结构材料时,除了传统介电质外,还非常重视材料性能。在MEMS中使用独立式元件会导致介电层和空气之间形成较大的界面,进而提供各种电荷陷阱机制。允许接触相同的表面时,可能导致称为粘滞的故障机制,其中接触后这些表面无法分离。本文概述了由静电驱动的MEMS器件中使用电介质导致的最普遍的失效机制,以及表征其材料特性和对可靠性性能的影响的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号