您现在的位置: 首页> 研究主题> 严格解

严格解

严格解的相关文献在1981年到2020年内共计71篇,主要集中在物理学、无线电电子学、电信技术、数学 等领域,其中期刊论文69篇、会议论文2篇、专利文献29686篇;相关期刊58种,包括财经研究、出版科学、中国图书评论等; 相关会议2种,包括中国核学会2011年年会、1999年全国微波毫米波会议等;严格解的相关文献由126位作者贡献,包括王永久、阮图南、阮成礼等。

严格解—发文量

期刊论文>

论文:69 占比:0.23%

会议论文>

论文:2 占比:0.01%

专利文献>

论文:29686 占比:99.76%

总计:29757篇

严格解—发文趋势图

严格解

-研究学者

  • 王永久
  • 阮图南
  • 阮成礼
  • 刘明成
  • 贺锋
  • 陆军
  • 井思聪
  • 何多慧
  • 刘萍
  • 刘键恒
  • 期刊论文
  • 会议论文
  • 专利文献

搜索

排序:

年份

    • 刘萍
    • 摘要: (1+1)维位移浅水波系统(1DDSWWS)是结合流体力学和变分原理, 运用拉格朗日坐标而构造的浅水波方程. 综合流体在 3 个维度空间上的能量, 将 1DDSWWS 推广, 可推导出(2+1)维位移浅水波系统(2DDSWWS). 2DDSWWS的严格解可表示为椭圆函数积分, 这个椭圆函数积分可退化为雅可比椭圆周期函数解和孤立波解. 2DDSWWS 的水面具有各种不同形态的孤子激发模式, 我们在 2DDSWWS 模型中也发现了孤子分子. 借用量纲分析的方法添加流体黏性项, 可以对理想的(2+1)维位移浅水波系统进行修正, 建立修正的 2DDSWWS 模型. 当黏性系数为零时,修正模型将退化成理想模型. 修正的2DDSWWS模型的严格解可以很清晰地展示流体的黏性对流体运动的影响. 在连续性方程中保留高阶项, 重构拉格朗日函数, 可以得到全非线性(2+1)维位移浅水波系统(FN2DDSWWE). 在低阶近似下, 忽略某些高阶项, FN2DDSWWE 可以退化成2DDSWWS模型.
    • 马红彩
    • 摘要: (1)从Lax可积系统的Lax对出发, 寻找非线性系统的对称及精确解, 利用这种方法可以解决不少(2+1)维的可积系统, 它的优点在于比较简洁方便, 这从KP方程的求解对比就可以看出. (2)从CK直接法入手, 将这种方法进行修正, 利用这种修正的CK直接法求非线性系统的对称和精确解; 这种方法的最大优点在于不但可以用于可积系统, 而且也适用于不可积系统, 还可以求出离散群. 另外, 这种方法也适用于高维的不可积模型.
    • 李林廷1; 杨铭1; 高英1
    • 摘要: 本文对拟凸多目标优化问题的严格解进行研究。利用拟凸次微分给出拟凸优化问题严格解的最优性必要条件。首先,引进拟凸函数次微分的基本概念和严格解的概念。然后,将拟凸函数次微分的概念应用到拟凸优化问题中,给出拟凸优化问题严格解的最优性必要条件。
    • 赵凡; 贺锋
    • 摘要: 运用欧拉-拉格朗日方程给出了Kerr时空赤道面上的零测地线方程并求出两个首次积分,结合零测地线所满足的恒等式求得轨道微分方程.通过把被积函数化成部分分式,以及解出被积函数中的一个四次方程并对根进行排序,可把轨道微分方程的解表示成第一类椭圆积分和第三类椭圆积分.
    • 赵凡; 贺锋; 任文辉
    • 摘要: 当遥远星体,太阳以及观测者在一条直线上时,由于星光在太阳引力场中的偏折效应将形成爱因斯坦环.忽略太阳自转,其外部引力场可用史瓦西度规描述.运用椭圆积分严格地求出零测地线的精确解,并从精确解反解出观测者的径向坐标.从零测地线的精确解可计算出观测者与太阳的距离必须大于或等于547.7天文单位才能观测到星光在太阳引力作用下产生的爱因斯坦环,但是爱因斯坦环几乎和太阳边缘重叠在一起,目前的技术难以分辨.
    • 赵阳; 齐岩; 杜安; 刘佳; 肖瑞; 单莹; 吴忧; 杨思浩
    • 摘要: The low-dimensional quantum spin systems have been extensively studied in the past three decades due to the novel ground states and rich magnetic behaviors, especially the quantum spin chain with diamond topology structure. Motivated by recent experimental success in Cu3(CO3)2(OH)2 compound, which is regarded as a model material of spin-1/2 diamond chain, researchers have paid a lot of attention to various variants of diamond spin chains. In this paper, we mainly examine the magnetic properties of an antisymmetric spin-1/2 Ising-Heisenberg diamond chain with the second-neighbor interaction between nodal spins. By using exact diagonalization and transfer-matrix methods, the ground-state phase diagram, magnetization behavior and macroscopic thermodynamics are exactly solved for the particular case that all magnetic bonds yield antiferromagnetic couplings, which usually shows the most interesting magnetic features closely related to a striking interplay between geometric frustration and quantum fluctuations. To clearly illustrate the effect of second-neighbor interaction item, we consider a highly frustrated situation that all Ising-Heisenberg bonds and Heisenberg bonds possess the same interaction strength. The calculation results indicate that the second-neighbor interaction item will enrich ground states and magnetization plateaus. A classical ferrimagnetic phase FRI1 corresponding to a novel two-thirds of intermediate plateau with translationally broken symmetry is introduced, manifesting itself as up-up-up-down-up-up spin configuration at a ground-state. In addition, there are other four distinct ground states which can be identified from the phase diagram, i.e., one saturated paramagnetic phase SP, one classical ferrimagnetic phase FRI2, one quantum ferrimagnetic phase QFI and the unique quantum antiferromagnetic phase QAF. The classical phase FRI2 and quantum phase QFI both generate one-third of magnetization plateau. It is worth mentioning that all the values of these magnetization plateaus satisfy the Oshikawa-Yamanaka-Affieck condition. Besides, the results also have shown a rich variety of temperature dependence of total magnetization and specific heat. The magnetization displays the remarkable thermal-induced changes as the external field is sufficiently close to critical value where two or more than two different ground states coexist. At the critical field relevant to a coexistence of two different states, the total magnetization displays a monotonic decrease trend. The thermal dependence of zero-field specific heat displays relative complex variations for different second-neighbor interactions between nodal spins. At first, the specific heat presents only a single rounded Schottky-type maximum. Using the second-neighbor interaction, another sharp peak arises at low-temperature and is superimposed on this round maximum, and the specific heat exhibits a double-peak structure. On further strengthening, the low-temperature one keeps its height shifting towards high temperature, while the high-temperature round peak suffers great enhancement and moves in an opposite direction. Finally, the low temperature peak entirely merges with the Schottky-type peak at a certain value of second-neighbor interaction, and above this value, the specific curve recovers its single peak structure. The observed double-peak specific heat curves mainly originate from thermal excitations between the ground-state spin configuration QAF and the ones close enough in energy to the ground state.%对含有次近邻节点自旋交换耦合的自旋-1/2伊辛-海森伯钻石链体系进行了研究,利用矩阵对角化和传递矩阵方法对基态磁相和宏观热力学量进行了严格求解,重点探讨了所有交换耦合均为反铁磁耦合时,体系节点伊辛自旋间次近邻相互作用的影响.研究结果表明次近邻节点伊辛自旋存在反铁磁耦合时会增强系统的阻挫效应,引入破坏平移对称性的经典亚铁磁相,使基态呈现出上上上下上上的自旋构型以及磁化曲线新颖的2/3磁化平台,丰富了体系的基态相图和宏观磁性行为.
    • 刘家福; 张昌芳; 曹则贤
    • 摘要: 首先给出了一维谐振子位置和动量算符的不确定度以及它们之间的不确定性关系,发现位置和动量算符的不确定度都随体系能量的增加而增加,这表明关于不确定性关系的两点流行表述,即“某一个量的不确定度变小则另一个量的不确定度必然变大”以及“某一个量的不确定度趋于零时则另一个量的不确定度必然变成无穷大”,都是错误的讹传。接着分析了这些讹传发生的起源。此外,还讨论了体系处于所考虑之算符的某个特征状态下因而此力学量的不确定度恒为零的特殊情形,进一步说明不确定性关系不具有原理性的意义。%The position and momentum uncertainties for the one-dimensional harmonic oscillator problem have been calculated ,both of w hich have been found to become larger on higher energy levels .It indicates that the two popular statements about the uncertainty relation ,i .e ,“the uncertainty of one operator de-creases ,that of the other must simultaneously increase” and “w hen the uncertainty of one operator be-comes vanishing ,that of the other must approach infinity” ,are simply misconceptions .The origin of such w rong misconceptions has been analyzed ,and ,further more ,the case has also been discussed that the sys-tem is in one of the eigenstates of an operator concerned ,thus the uncertainty of this operator is always ze-ro ,w hich thus denies the uncertainty relation given by Heisenberg or Robertson ,w hich again confirms the fact that the uncertainty relation does not cherish any principal meanings .
    • 房超
    • 摘要: 在考虑吸附效应等物理过程的基础上,得到了裂变产物在UO2颗粒中扩散与释放模型的严格解,并导出了不同反应堆运行状态下裂变产物累积释放份额F(t)、释放-产出比R(t)/B(t)的严格表达式.利用上述结果以及相应的近似解、数值解,对半衰期为数天的惰性气体和卤素裂变产物(131I、131Xem、133Xe和133Xem)在不同堆芯历史条件下的F(t)和R(t)/B(t)进行了比较计算.分析表明,F(t)与R(t)/B(t)的结果均有所差别,但当反应堆运行时间达一定长度后,它们的数值相等.此外,严格解去掉了近似解中不必要的保守性,也比数值解更符合物理实际.%The exact solutions of diffusion and release model of noble gas and halogen fission products in UO2 particle of HTGR were built under the conditions of adsorption effect and other physical processes. The corresponding release fractions (F(t)) and the ratio of release and productive amounts (R (t)/B (t)) of fission products were also derived. Furthermore, the F(t) and R(t)/B(t) of 131I, 131Xem, 133Xe and 133Xem whose half-lifes are several days in UO2 particle with the exact solutions, approximate solutions and corresponding numerical solutions under different temperature histories of reactor core were investigated. The results show that the F(t) and R(t)/B(t) are different in numerical values unless the time of release is long enough. The properties of conservation of exact solutions are much more reasonable than the ones of approximate solutions. It is also found that the results of exact solutions approach the actual working conditions more than the approximate and numerical solutions.
    • 李春宏; 刘丽英
    • 摘要: 目的 研究一类含Hille-Yosida算子的Volterra积分微分方程严格解的存在性和唯一性.方法 使用抽象Cauchy问题的结论和压缩映象原理.结果 与结论证明了含Hille-Yosida算子的Volterra积分微分方程严格解的存在性和唯一性
    • 刘萍; 李子良; 楼森岳
    • 摘要: 讨论了大气科学里的一类耦合非线性Schrdinger方程的Painlevé可积性和严格解.并给出了这个耦合方程通过Painlevé性质检测的参数条件.应用椭圆余弦函数展开法,得到了这个耦合非线性Schrdinger方程的20个周期椭圆余弦波解.这些严格解被用应用于解释大气重力波的产生和传输机制.
  • 查看更多

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号