首页> 外文期刊>IEEE Robotics and Automation Letters >Learning-Based Fingertip Force Estimation for Soft Wearable Hand Robot With Tendon-Sheath Mechanism
【24h】

Learning-Based Fingertip Force Estimation for Soft Wearable Hand Robot With Tendon-Sheath Mechanism

机译:具有肌腱鞘机制的软可穿戴手机机器人的基于学习的指尖力估计

获取原文
获取原文并翻译 | 示例

摘要

Soft wearable hand robots with tendon-sheath mechanisms are being actively developed to assist people with lost hand mobility. For these robots, accurately estimating fingertip forces leads to successful object grasping. An approach can utilize information from actuators assuming quasi-static environments. However, non-linearity and hysteresis with regards to the dynamic changes of the tendon-sheath mechanism hinder accurate fingertip force estimation. This paper proposes a learning-based method to estimate fingertip forces by integrating dynamic information of motor encoders, wire tension, and sheath bending angles. The model is modified from Long Short-Term Memory by incorporating a residual term that governs the dynamic changes in sheath bending angles. Using a tendon-driven soft wearable hand robot, the proposed model obtained RMSE less than 0.44 N. It was further evaluated under criteria ranging from different object sizes, bending angle ranges, and forces. Finally, a repeatability test (0.46 N in RMSE), real-time applicability (125 Hz), and force control (12.7% in MAPE) were performed to verify the feasibility of the proposed method.
机译:正在积极开发具有肌腱鞘机制的柔软可穿戴手机机器人,以帮助人们失去手动流动性。对于这些机器人来说,精确地估计指尖力导致成功的对象抓握。一种方法可以利用来自致动器的信息假设准静态环境。然而,关于肌腱鞘机构的动态变化的非线性和滞后阻碍了精确的指尖力估计。本文提出了一种基于学习的方法来估计指尖力来估计电动机编码器,线张力和护套弯曲角度的动态信息。该模型通过结合剩余术语来从长短短期存储器修改,该残留项控制鞘弯曲角度的动态变化。使用肌腱驱动的软可穿戴手机机器人,所提出的模型获得的RMSE小于0.44n.它在从不同物体尺寸,弯曲角度范围和力的标准下进一步评估。最后,进行重复性测试(RMSE中的0.46n),实时适用性(125Hz)和力控制(MAPE中12.7%)以验证所提出的方法的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号