首页> 外文期刊>Mechanism and Machine Theory: Dynamics of Machine Systems Gears and Power Trandmissions Robots and Manipulator Systems Computer-Aided Design Methods >Distal-end force prediction of tendon-sheath mechanisms for flexible endoscopic surgical robots using deep learning
【24h】

Distal-end force prediction of tendon-sheath mechanisms for flexible endoscopic surgical robots using deep learning

机译:深度学习柔性内窥镜手术机器人肌腱鞘机构的远端力预测

获取原文
获取原文并翻译 | 示例
           

摘要

Accurate haptic feedback is highly challenging for flexible endoscopic surgical robots due to space limitation for sensors on small end-effectors and critical force hysteresis of their tendon-sheath mechanisms (TSMs). This paper proposes a deep learning approach to predicting the distal force of TSMs when manipulating a biological tissue based on only proximal-end measurements. Both Multilayer Perceptron (MLP) and Recurrent Neural Network (RNN) were investigated to study their capabilities of making sequential distal force predictions. The results were compared with those of the conventional modelling approach. It was observed that, when sufficient data was provided for training, RNN achieved the most accurate prediction (RMSE = 0.0219 N) in experiments with constant system velocity. The effects of insufficient training data, varying system velocity and irregular motion trajectories on the performance of RNN were further studied. Notably, RNN could precisely identify the current system phase in the force hysteresis profile and can be applied to TSMs with realistic non-periodic movement such as manual manipulation trajectory (RSME = 0.2287 N). The proposed approach can be applied to any TSM-driven robotic systems for accurate haptic feedback without requiring sensors at the distal ends of the robots. (C) 2019 Elsevier Ltd. All rights reserved.
机译:对于传感器上的传感器的空间限制和其肌腱鞘机构(TSMS)的临界力滞后,精确的触觉反馈是对柔性内窥镜手术机器人的强大挑战。本文提出了一种深入的学习方法来预测基于仅基于近端测量来操纵生物组织时TSM的远端力。研究了多层erceptron(MLP)和经常性神经网络(RNN),以研究其制定序贯远端力预测的能力。将结果与传统建模方法的结果进行比较。观察到,当提供足够的数据进行训练时,RNN在具有恒定系统速度的实验中实现了最精确的预测(RMSE = 0.0219 n)。进一步研究了训练数据不足,不同系统速度和不规则运动轨迹的影响,进一步研究了对RNN性能的影响。值得注意的是,RNN可以精确地识别力滞后配置文件中的当前系统阶段,并且可以应用于具有现实非周期性运动的TSM,例如手动操纵轨迹(RSME = 0.2287N)。所提出的方法可以应用于任何TSM驱动的机器人系统,用于精确触觉反馈,而不需要在机器人的远端处的传感器。 (c)2019年elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号