首页> 外文期刊>Automation Science and Engineering, IEEE Transactions on >Neural-Network-Based Optimal Control for a Class of Unknown Discrete-Time Nonlinear Systems Using Globalized Dual Heuristic Programming
【24h】

Neural-Network-Based Optimal Control for a Class of Unknown Discrete-Time Nonlinear Systems Using Globalized Dual Heuristic Programming

机译:基于神经网络的一类未知离散非线性系统的全局最优启发式控制

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a neuro-optimal control scheme for a class of unknown discrete-time nonlinear systems with discount factor in the cost function is developed. The iterative adaptive dynamic programming algorithm using globalized dual heuristic programming technique is introduced to obtain the optimal controller with convergence analysis in terms of cost function and control law. In order to carry out the iterative algorithm, a neural network is constructed first to identify the unknown controlled system. Then, based on the learned system model, two other neural networks are employed as parametric structures to facilitate the implementation of the iterative algorithm, which aims at approximating at each iteration the cost function and its derivatives and the control law, respectively. Finally, a simulation example is provided to verify the effectiveness of the proposed optimal control approach.
机译:提出了一种在成本函数中具有折现因子的未知离散非线性系统的神经最优控制方案。介绍了一种采用全局双重启发式规划技术的迭代自适应动态规划算法,通过对成本函数和控制律的收敛性分析,获得了最优控制器。为了执行迭代算法,首先构造神经网络以识别未知受控系统。然后,基于学习到的系统模型,采用另外两个神经网络作为参数结构来促进迭代算法的实现,该迭代算法的目的是分别在每次迭代时近似成本函数及其导数和控制律。最后,提供了一个仿真示例,以验证所提出的最优控制方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号