首页> 外文期刊>Automation Science and Engineering, IEEE Transactions on >Neural-Network-Based Constrained Optimal Control Scheme for Discrete-Time Switched Nonlinear System Using Dual Heuristic Programming
【24h】

Neural-Network-Based Constrained Optimal Control Scheme for Discrete-Time Switched Nonlinear System Using Dual Heuristic Programming

机译:离散启发式非线性系统的双重启发式神经网络约束最优控制方案

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel iterative two-stage dual heuristic programming (DHP) is proposed to solve the optimal control problems for a class of discrete-time switched nonlinear systems subject to actuators saturation. First, a novel nonquadratic performance functional is introduced to confront control constraints of the saturating actuator. Then, the iterative two-stage DHP algorithm is developed to solve the Hamilton–Jacobi–Bellman (HJB) equation of the switched system with the saturating actuator. Moreover, the convergence and optimality of the two-stage DHP algorithm are strictly proven. To implement this algorithm efficiently, there are two neural networks used as parametric structure to approximate the costate function and the corresponding control law, respectively. Finally, simulation results are given to verify the effectiveness of the proposed algorithm.
机译:本文提出了一种新颖的迭代两阶段双重启发式编程(DHP),以解决一类离散时间切换非线性系统在执行器饱和的情况下的最优控制问题。首先,引入一种新颖的非二次性能函数来面对饱和致动器的控制约束。然后,开发了两阶段迭代DHP算法,以求解带饱和执行器的切换系统的Hamilton–Jacobi–Bellman(HJB)方程。此外,严格证明了两阶段DHP算法的收敛性和最优性。为了有效地实现该算法,有两个神经网络用作参数结构来分别逼近肋功能和相应的控制律。最后,通过仿真结果验证了所提算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号