首页> 外文期刊>Neurocomputing >Neural-network-based optimal tracking control scheme for a class of unknown discrete-time nonlinear systems using iterative ADP algorithm
【24h】

Neural-network-based optimal tracking control scheme for a class of unknown discrete-time nonlinear systems using iterative ADP algorithm

机译:基于神经网络的迭代ADP算法对一类未知离散非线性系统的最优跟踪控制方案

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an optimal tracking control scheme is proposed for a class of unknown discrete-time nonlinear systems using iterative adaptive dynamic programming (ADP) algorithm. First, in order to obtain the dynamics of the system, an identifier is constructed by a three-layer feedforward neural network (NN). Second, a feedforward neuro-controller is designed to get the desired control input of the system. Third, via system transformation, the original tracking problem is transformed into a regulation problem with respect to the state tracking error. Then, the iterative ADP algorithm based on heuristic dynamic programming is introduced to deal with the regulation problem with convergence analysis. In this scheme, feedforward NNs are used as parametric structures for facilitating the implementation of the iterative algorithm. Finally, simulation results are also presented to demonstrate the effectiveness of the proposed scheme.
机译:本文提出了一种基于迭代自适应动态规划算法的一类未知离散时间非线性系统的最优跟踪控制方案。首先,为了获得系统的动态性,通过三层前馈神经网络(NN)构建标识符。其次,设计前馈神经控制器以获得系统所需的控制输入。第三,通过系统转换,将原始跟踪问题转换为关于状态跟踪误差的调节问题。然后,引入基于启发式动态规划的迭代ADP算法,通过收敛性分析来解决调节问题。在该方案中,前馈神经网络被用作参数结构,以促进迭代算法的实现。最后,还给出了仿真结果以证明所提方案的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号