首页> 外文期刊>Neurocomputing >Neural-network-based adaptive optimal tracking control scheme for discrete-time nonlinear systems with approximation errors
【24h】

Neural-network-based adaptive optimal tracking control scheme for discrete-time nonlinear systems with approximation errors

机译:具有近似误差的离散非线性系统的基于神经网络的自适应最优跟踪控制方案

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a new infinite horizon neural-network-based adaptive optimal tracking control scheme for discrete-time nonlinear systems is developed. The idea is to use iterative adaptive dynamic programming (ADP) algorithm to obtain the iterative tracking control law which makes the iterative performance index function reach the optimum. When the iterative tracking control law and iterative performance index function in each iteration cannot be accurately obtained, the convergence criteria of the iterative ADP algorithm are established according to the properties with finite approximation errors. If the convergence conditions are satisfied, it shows that the iterative performance index functions can converge to a finite neighborhood of the lowest bound of all performance index functions, Properties of the finite approximation errors for the iterative ADP algorithm are also analyzed. Neural networks are used to approximate the performance index function and compute the optimal control policy, respectively, for facilitating the implementation of the iterative ADP algorithm. Convergence properties of the neural network weights are proven. Finally, simulation results are given to illustrate the performance of the developed method.
机译:本文针对离散非线性系统,提出了一种基于无限层神经网络的自适应最优跟踪控制方案。其思想是利用迭代自适应动态规划(ADP)算法获得迭代跟踪控制律,使迭代性能指标函数达到最优。当不能准确获得每次迭代的迭代跟踪控制律和迭代性能指标函数时,根据具有有限逼近误差的性质,建立迭代ADP算法的收敛准则。如果满足收敛条件,则表明迭代性能指标函数可以收敛到所有性能指标函数最低边界的有限邻域,并且还分析了迭代ADP算法的有限近似误差的性质。神经网络分别用于近似性能指标函数和计算最佳控制策略,以促进迭代ADP算法的实现。证明了神经网络权重的收敛性。最后,仿真结果说明了该方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号