您现在的位置: 首页> 研究主题> 稀疏表示

稀疏表示

稀疏表示的相关文献在2004年到2023年内共计3276篇,主要集中在自动化技术、计算机技术、无线电电子学、电信技术、机械、仪表工业 等领域,其中期刊论文2129篇、会议论文65篇、专利文献13257篇;相关期刊546种,包括中国图象图形学报、电子学报、电子与信息学报等; 相关会议52种,包括第十七届中国Rough集与软计算学术会议、第十一届中国Web智能学术研讨会、第十一届中国粒计算研讨会及第五届三支决策学术会议联合会议 (CRSSC-CWI-CGrC-3WD 2017)、第四届高分辨率对地观测学术年会、2016年全国设备监测诊断与维护学术会议、第十五届全国设备故障诊断学术会议、第十七届全国设备监测与诊断学术会议、2016年全国设备诊断工程会议等;稀疏表示的相关文献由6940位作者贡献,包括焦李成、侯彪、马文萍等。

稀疏表示—发文量

期刊论文>

论文:2129 占比:13.78%

会议论文>

论文:65 占比:0.42%

专利文献>

论文:13257 占比:85.80%

总计:15451篇

稀疏表示—发文趋势图

稀疏表示

-研究学者

  • 焦李成
  • 侯彪
  • 马文萍
  • 王爽
  • 马晶晶
  • 杨淑媛
  • 胡正平
  • 刘芳
  • 练秋生
  • 肖亮
  • 期刊论文
  • 会议论文
  • 专利文献

搜索

排序:

年份

作者

    • 圣文顺; 孙艳文; 张会影
    • 摘要: 为解决稀疏理论融合后多聚焦图像细节特征模糊、综合效果不佳等问题,提出了一种将稀疏理论与快速有限剪切波变换联合引导滤波(FFST-GIF)相结合的图像融合算法.利用FFST从原始图像中分解出高频和低频子带系数,采用引导滤波的相对标准差算法融合细节信息丰富的高频系数;使用K-SVD方法训练得到完备字典,再结合稀疏理论融合低频系数;通过逆FFST将融合后的高、低频子带系数进行再融合,得到新的融合图像.基于MATLAB,选取哈佛大学数据库中的脑核磁共振图像为样本,采用平均梯度(AG)、空间频率(SF)、互信息(MI)以及边缘保留信息传递因子(Q^(AB/F))4个客观评价指标,将所提出算法与基于非下采样轮廓波变换与脉冲耦合神经网络的多聚焦图像融合算法等3种不同融合算法进行对比,进行了不同变换域融合试验与不同融合算法试验.结果表明,所提出算法在客观综合评价指标与视觉效果方面均取得了突出优势,各评价指标参数都有较大提升,AG、Q^(AB/F)最高值分别可达0.0813、0.7935,所提出算法有较好的应用前景.
    • 孙春红; 丁广太; 方坤
    • 摘要: 为准确鉴别羊绒与羊毛纤维,提出了一种基于稀疏字典学习的分类方法。首先,对纤维图像进行预处理实现数据增强,获取纤维图像特征矩阵;之后,对特征矩阵进行字典学习,获取过完备字典与稀疏编码;最后,通过稀疏编码与字典实现羊绒与羊毛的分类和鉴别。该方法使用光学显微镜以及扫描电子显微镜图像作为数据集,实验结果表明,与支持向量机分类器以及基于稀疏表示的分类算法相比,本文方法的分类准确率可提高5%~10%,分类准确率最高可达到91%,可用于后续实际的羊绒与羊毛纤维分类与鉴定工作。
    • 徐永华; 刘海强; 朱良朋; 邵斐
    • 摘要: 煤矿井下无线传感器网络存在着能量受限的问题,需要研究高效的数据压缩采集方法解决此问题。分布式压缩感知是一种高效的数据压缩采集方法。提出基于分布式压缩感知的煤矿井下图像压缩采集方法,将图像按列划分为多个图像块,对每个图像块单独压缩编码,在服务器上利用信号内相关性和信号间相关性联合解码。实验结果表明,在相同压缩率下,新方法与传统的压缩感知相比能够获得更好的图像质量,恢复图像所需的时间更少,实时性更强。
    • 余阿东
    • 摘要: 针对传统滚动轴承故障识别算法存在的特征提取与选择困难的问题,提出了一种基于深度字典学习(DDL)的滚动轴承故障诊断方法。首先,利用传感器采集了不同工况下的滚动轴承故障振动数据,并利用字典学习的稀疏性约束逐层学习了轴承故障数据中的典型结构特征;然后,借鉴深度学习的“逐层特征提取”思想,根据故障样本结构构造了深度故障字典,将故障样本输入深度故障字典,根据样本的重建误差确定了故障类别;最后,以滚动轴承试验台为对象测试了DDL模型的有效性。研究结果表明:采用该方法得到的滚动轴承故障识别准确率达到99.28%,训练时间仅为765 s;相比于卷积神经网络、循环神经网络等深度学习方法,该方法在故障识别准确率方面和训练速度方面具有较大优势;DDL方法利用驱动字典,可以自动提取出轴承振动信号样本中的故障特征,同时,深度字典结构使所提取的故障特征具有较好的层次性,符合人们对故障的直观认识。
    • 李婷婷; 段中钰
    • 摘要: 地震数据的稀疏性是压缩感知地震数据重建的重要前提,其直接影响地震数据的重建精度,因此研究高效的地震数据稀疏表示方法具有重要意义。针对经典K-SVD算法稀疏编码时无法得到全局最优解,不能保证收敛从而影响重建精度的问题,这里提出快速字典学习算法稀疏表示地震数据的方法。快速字典学习将稀疏表示目标优化问题转换为两个可直接求解最值的子优化问题,且将稀疏约束上限与字典相干性关,将快速字典学习算法应用于压缩感知地震数据重建。模拟地震数据以及大庆油田实际地震数据仿真验证结果表明,基于快速字典学习的压缩感知地震数据重建不仅能更好地重建地震数据细节,而且耗时少。
    • 张瑞; 孟晨; 王成; 王强
    • 摘要: 快速迭代收缩阈值算法(FISTA)为低复杂度、高效率的信号重建铺平了道路。但是,当应用到线性调频信号重构时,传统的FISTA算法存在重构效果不佳、收敛速度慢等缺点。为了提高重建效果,提出基于保护系数的改进快速迭代收缩阈值算法(IFISTA)。在新方案下,首先,利用线性调频信号在分数阶傅里叶变换下的时频稀疏特性得到线性调频信号良好的稀疏表示,在迭代过程中对所有重构系数进行分析;然后,与特征相关的系数将被保护免受阈值收缩,以减少信息损失。仿真信号实验分析验证了该算法的有效性,结果表明,在相同信噪比条件下,提出的算法在线性调频信号的重构方面优于传统算法的性能。
    • 朱虎飞; 丁子豪; 杨永亮; 冯旭祥; 丁大伟
    • 摘要: 在强干扰复杂环境下,有效的特征选择对于目标跟踪模型的可解释性至关重要.针对这一问题,本文基于再生核Hilbert空间(RKHS)理论,对特征空间构建生成式的两阶段稀疏表示(TSSR)模型,从而描述图像样本与字典之间的非线性关系,避免了在字典中引入大量的琐碎模板.在第1阶段,首先建立图像样本与字典在原始低维空间中的关系,然后利用批处理最小二乘算法求得稀疏表示系数的初值,根据观测模型确定初始跟踪位置的分布;在第2阶段,首先利用核方法将原始低维空间映射到高维特征空间,然后提出一种基于核的加速近端梯度算法(KAPG),从而求得字典元素系数的核稀疏表示,最终确定跟踪目标.最后实验结果证明了本文所提出的TSSR方法在面对视角变化和部分遮挡时的有效性.
    • 赵良军; 董林鹭; 杨平先; 林国军; 石小仕; 陈明举
    • 摘要: 针对传统的边缘提取算法,在提取边缘时,不完整、不连续,尤其在高噪声情况下,无法提取图像边缘等问题,提出一种基于先验知识的边缘提取算法.首先,学习与待边缘处理图像有相似纹理信息的图像,获得先验知识,对噪声图纹理进行修复;然后,再利用局部均匀稀疏度方法强化细节特征,弱化背景特征;最后,检测出图像边缘,达到提取图像边缘的目的.实验结果表明,该算法能够克服传统边缘算子在边缘提取时,边缘不完整、不连续等缺点;同时,对强高斯噪声污染图像具有优秀的边缘提取效果.
    • 朱文生; 何显文
    • 摘要: 由于图像在获取、发布或传输过程中受到噪声的污染,导致图像质量下降.现有的大部分图像去噪方法仅针对高斯噪声情况进行图像恢复,一般来说,现实中图像容易同时受到高斯噪声和椒盐噪声的污染.针对这一情况,文章提出基于加权低秩表示和L_(1)范数的混合噪声去除算法.该算法首先采用加权低秩表示来刻画图像的全局特性,同时利用L_(1)范数来描述稀疏噪声,设计了图像混合去噪模型.然后采用交替方向乘子法对混合去噪模型进行求解.最后对含混合噪声的图像进行了仿真实验分析,结果表明提出的算法能够较好地去除图像中的混合噪声,进一步提高图像的视觉感知质量.
    • 韩红伟; 冯向东; 郭科
    • 摘要: 稀疏解混能够有效地规避高光谱场景中缺少纯像元和估计端元数目的两个瓶颈问题,因而成为目前广泛研究的光谱解混技术。针对协同稀疏解混模型在边界上容易出现错误识别的问题,结合字典削减策略和低秩表示,提出一种协同稀疏低秩的解混模型。该方法同时施加稀疏和低秩约束在丰度矩阵上,并对协同稀疏模型的?2,1混合范数采用加权策略,使得行稀疏性得到了增强,同时也使用非凸logdet(·)作为秩的光滑替代函数。由于提出方法充分利用了高光谱数据的空间信息和光谱信息,因此获得了比协同稀疏回归模型更准确的解混结果。最后利用著名的交替方向乘子方法(ADMM)对提出的非凸模型进行有效求解,实验结果验证了提出算法的有效性。
  • 查看更多

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号