首页> 外文OA文献 >MBE growth and study of low-density InAs/GaAs quantum dots and wetting layer
【2h】

MBE growth and study of low-density InAs/GaAs quantum dots and wetting layer

机译:MBE生长以及低密度InAs / GaAs量子点和润湿层的研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Semiconductor quantum dots (QDs) prepared with Molecular Beam Epitaxy (MBE) represent an interesting approach to the development of single-photon sources at telecom wavelengths [1]. Structures with low QD density can be successfully prepared by using growth conditions that lead to increased cation migration length, such as relatively high QD growth temperature and/or low QD growth rate [2]; long-wavelength emission, on the other hand, may be obtained by inserting an InGaAs upper confining layer (UCL) on top of the QDs [3]. A complete picture of the properties not only of QDs but also of the wetting layer (WL) in these structures is particularly interesting since WL states have important effects on QD carriers dynamics. We present here the study of morphological, structural and optical properties of MBE-grown structures in which QDs were deposited at low growth rate (0.01 ML/s) and high growth temperature (520 ?C) and capped with InGaAs UCLs [4]. Owing to these particular design and growth parameters, the structures have QD densities of 4-5x109 cm-2 and emission wavelengths ranging from 1.20 to 1.33 ?m at 10 K. The WL properties were investigated with low temperature photoluminescence (PL) and high resolution X-Ray diffraction (XRD); the experimental WL transition energies were compared to simple model calculations of quantum energy levels. Our results show that the structural parameters extracted by XRD spectra simulations deviate from nominal values, as probably due to the growth parameters used to obtain low QD density [5]. The optical and structural properties of QDs were studied by means of PL, time-resolved PL (TRPL), Transmission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM). TEM characterization was used to analyze the composition profiles in QDs, WL and UCLs; the results were related to the particular growth conditions used to prepare the structures. AFM measurements clearly evidenced on all samples bimodal distributions of QD heights that have been related to the observed double-peaked PL spectra. Optical characterization has been carried out as a function of temperature. Arrhenius plots of the integrated PL show two activation energies implying two decay processes. The first one is associated to thermal escape of carriers from the QDs to the WL states; the second one could be due to the presence of dark states, as suggested by TRPL measurements. The results of this comprehensive characterization are useful to reach an in-depth understanding of the quantum system and its potential as a source of single photons. [1] Intallura P.M., Ward M.B., et al., J Opt A-Pure Appl Op 2009, 11, 05400509. [2] Joyce P.B., Krzyzewski T.J., et al., Phys Rev B 2000, 62, 10891. [3] Alloing B., Zinoni C et al., Appl Phys Lett 2005, 86, 101908. [4] Trevisi G., Seravalli L., et al., Nanotechnology 2009, 20, 415607. [5] Seravalli L., Bocchi C., et al., submitted to J Appl Phys.
机译:用分子束外延(MBE)制备的半导体量子点(QD)代表了一种开发电信波长单光子源的有趣方法[1]。通过使用导致阳离子迁移长度增加的生长条件,例如相对较高的QD生长温度和/或较低的QD生长速率,可以成功地制备具有低QD密度的结构[2];另一方面,可以通过在QD的顶部插入InGaAs上约束层(UCL)来获得长波长发射[3]。由于WL状态对QD载流子动力学具有重要影响,因此,不仅对QD的特性而且对这些结构中的润湿层(WL)的特性的完整描述都非常有趣。我们在此介绍MBE生长结构的形态,结构和光学性质的研究,其中QD以低生长速率(0.01 ML / s)和高生长温度(520°C)沉积并用InGaAs UCL封盖[4]。由于这些特殊的设计和生长参数,该结构的QD密度为4-5x109 cm-2,在10 K下的发射波长范围为1.20至1.33 µm。使用低温光致发光(PL)和高分辨率研究了WL特性。 X射线衍射(XRD);将实验的WL跃迁能与量子能级的简单模型计算进行了比较。我们的结果表明,通过XRD光谱模拟提取的结构参数与标称值存在偏差,这可能是由于用于获得低QD密度的生长参数所致[5]。通过PL,时间分辨PL(TRPL),透射电子显微镜(TEM)和原子力显微镜(AFM)研究了量子点的光学和结构性质。 TEM表征用于分析QD,WL和UCL中的成分分布。结果与用于制备结构的特定生长条件有关。原子力显微镜的测量清楚地证明了与观测到的双峰PL光谱有关的所有样品的QD高度双峰分布。光学表征已经作为温度的函数进行了。积分PL的Arrhenius图显示了两个活化能,暗示了两个衰变过程。第一个与载流子从量子点到WL状态的热逸出有关;第二种可能是由于TRPL测量所暗示的存在暗态。这种全面表征的结果有助于深入了解量子系统及其作为单光子源的潜力。 [1] Intallura PM,Ward MB等,J Opt A-Pure Appl Op 2009,11,05400509。[2] Joyce PB,Krzyzewski TJ等,Phys Rev B 2000,62,10891。[3] ] Alloing B.,Zinoni C等人,Appl Phys Lett 2005,86,101908。[4] Trevisi G.,Seravalli L.等人,Nanotechnology 2009,20,415607。[5] Seravalli L.,Bocchi C.等人提交给J Appl Phys。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号