首页> 外文学位 >Epitaxial Growth of High Quality InAs/GaAsSb Quantum Dots for Solar Cells.
【24h】

Epitaxial Growth of High Quality InAs/GaAsSb Quantum Dots for Solar Cells.

机译:用于太阳能电池的高质量InAs / GaAsSb量子点的外延生长。

获取原文
获取原文并翻译 | 示例

摘要

The development of high efficiency III-V solar cells is needed to meet the demands of a promising renewable energy source. Intermediate band solar cells (IBSCs) using semiconductor quantum dots (QDs) have been proposed to exceed the Shockley-Queisser efficiency limit [1]. The introduction of an IB in the forbidden gap of host material generates two additional carrier transitions for sub-bandgap photon absorption, leading to increased photocurrent of IBSCs while simultaneously allowing an open-circuit voltage of the highest band gap. To realize a high efficiency IBSC, QD structures should have high crystal quality and optimized electronic properties. This dissertation focuses on the investigation and optimization of the structural and optical properties of InAs/GaAsSb QDs and the development of InAs/GaAsSb QD-based IBSCs.;In the present dissertation, the interband optical transition and carrier lifetime of InAs/GaAsSb QDs with different silicon delta-doping densities have been first studied by time-integrated and time-resolved photoluminescence (PL). It is found that an optimized silicon delta-doping density in the QDs enables to fill the QD electronic states with electrons for sub-bandgap photon absorption and to improve carrier lifetime of the QDs.;After that, the crystal quality and QD morphology of single- and multi-stack InAs/GaAsSb QDs with different Sb compositions have been investigated by transmission electron microscopy (TEM) and x-ray diffraction (XRD). The TEM studies reveal that QD morphology of single-stack QDs is affected by Sb composition due to strain reducing effect of Sb incorporation. The XRD studies confirm that the increase of Sb composition increases the lattice mismatch between GaAs matrix and GaAsSb spacers, resulting in increase of the strain relaxation in GaAsSb of the multi-stack QDs. Furthermore, the increase of Sb composition causes a PL redshift and increases carrier lifetime of QDs.;Finally, the spacer layer thickness of multi-stack InAs/GaAsSb QDs is optimized for the growth of InAs/GaAsSb QD solar cells (QDSCs). The InAs/GaAsSb QDSCs with GaP strain compensating layer are grown and their device performances are characterized. The increase of GaP coverage is beneficial to improve the conversion efficiency of the QDSCs. However, the conversion efficiency is reduced when using a relatively large GaP coverage.
机译:为了满足有前途的可再生能源的需求,需要开发高效的III-V太阳能电池。已提出使用半导体量子点(QD)的中带太阳能电池(IBSC)超过了Shockley-Queisser效率极限[1]。在主体材料的禁带中引入IB会产生两个额外的载流子跃迁,以吸收亚带隙光子,从而导致IBSC的光电流增加,同时允许最大带隙的开路电压。为了实现高效的IBSC,QD结构应具有较高的晶体质量和优化的电子性能。本文主要研究和优化了InAs / GaAsSb量子点的结构和光学性质,并研究了基于InAs / GaAsSb量子点的IBSCs的发展。首先通过时间积分和时间分辨光致发光(PL)研究了不同的硅δ掺杂密度。发现优化的量子点中的硅δ掺杂密度可以使电子充满子带隙光子吸收的量子点电子态,并改善量子点的载流子寿命。然后,单晶的晶体质量和量子点形态通过透射电子显微镜(TEM)和X射线衍射(XRD)研究了具有不同Sb组成的InAs / GaAsSb和In-GaAsSb多层QD。 TEM研究表明,由于Sb掺入的应变降低作用,单堆QD的QD形态受Sb组成的影响。 XRD研究证实,Sb组成的增加会增加GaAs基质与GaAsSb间隔物之间​​的晶格失配,从而导致多堆叠QD的GaAsSb中的应变松弛增加。此外,Sb组成的增加会导致PL红移并延长QDs的载流子寿命。最后,针对InAs / GaAsSb QD太阳能电池(QDSC)的生长优化了多堆叠InAs / GaAsSb QDs的隔离层厚度。生长具有GaP应变补偿层的InAs / GaAsSb QDSC,并表征其器件性能。 GaP覆盖率的增加有利于提高QDSC的转换效率。但是,当使用较大的GaP覆盖范围时,转换效率会降低。

著录项

  • 作者

    Kim, Yeongho.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 139 p.
  • 总页数 139
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号