首页> 外文OA文献 >Secondary analysis of large-scale international datasets in the service of national education policy evaluation: The case of PISA Australia
【2h】

Secondary analysis of large-scale international datasets in the service of national education policy evaluation: The case of PISA Australia

机译:为国家教育政策评估服务的大规模国际数据集的二次分析:以PISA澳大利亚为例

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

National educational policy analysis and evaluation is a complex endeavour that would seem to demand empirical data gathering efforts that are of appropriate scale and high quality. However, mounting such data-gathering efforts can be resource and time-intensive. As an alternative strategy, this presentation describes the secondary analysis of an existing large-scale dataset that potentially adds value to educational policy evaluation. In particular, as a member of the Organisation for Economic Cooperation and Development (OECD), Australia participates in the Programme for International Student Assessment (PISA) that every few years assesses the educational attainment of 15-year old students in the core learning areas of reading, maths, science and problem solving. PISA datasets are housed and managed by the Australian Centre for Educational Research (ACER) and it is this dataset that is the subject of our secondary analysis here.udud For the current policy question, Australia’s new Commonwealth government has begun consideration of applying a so-called “socioeconomic status (SES) model” to public school funding. We suggest that the secondary analysis of extant large-scale datasets can provide important input to the discussion of school funding policies by shedding light on previously obscured or possibly unexamined relationships. For example, it is already well established in the educational research literature that the socioeconomic status of individual students is strongly associated with educational attainment as measured by standardized assessment systems, whether local, national or international. In addition, various international studies have shown that the aggregated socioeconomic profile of a school is also positively associated with students’ academic attainment. ududHowever, less is known about the nature of these relationships when both individual student and school socioeconomic status are disaggregated. To uncover these finer-grained associations, we subjected Australia’s 2003 PISA dataset to secondary analysis to better understand the reading, mathematics and science achievement of secondary school students from different SES backgrounds, across a variety of school SES strata. This finer-grained secondary analysis shows that increases in the aggregated SES of a school are consistently and strongly associated with increases in students’ academic performance, and that this relationship holds for all students regardless of their individual SES. In the Australian case, the aggregated socio-economic profile of the school matters greatly in terms of academic performance. We conclude the presentation with a discussion of the implications of these findings for Australia’s federal school funding policies with particular attention given to the influence of school composition on student attainment.
机译:国家教育政策分析和评估是一项复杂的工作,似乎需要适当规模和高质量的经验数据收集工作。但是,进行此类数据收集工作可能会占用大量资源和时间。作为替代策略,本演示文稿介绍了对现有大型数据集的二次分析,该分析可能会增加教育政策评估的价值。尤其是,作为经济合作与发展组织(OECD)的成员,澳大利亚参加了国际学生评估计划(PISA),该计划每隔几年对15岁学生在以下国家的核心学习领域的教育程度进行评估:阅读,数学,科学和解决问题的能力。 PISA数据集由澳大利亚教育研究中心(ACER)存放和管理,此数据集是我们在此处进行二级分析的主题。 ud ud对于当前的政策问题,澳大利亚新联邦政府已开始考虑应用公立学校资助的所谓“社会经济地位(SES)模型”。我们建议对现有大型数据集进行二次分析可以通过阐明先前模糊或可能未经审查的关系,为学校资助政策的讨论提供重要的投入。例如,在教育研究文献中已经很好地确定了,每个学生的社会经济状况与通过本地,国家或国际标准化评估系统衡量的教育程度密切相关。此外,各种国际研究表明,学校的综合社会经济状况也与学生的学业成绩成正比。 ud ud但是,如果将个别学生和学校的社会经济地位分开,对这些关系的本质知之甚少。为了发现这些更细粒度的关联,我们对澳大利亚的2003年PISA数据集进行了二次分析,以更好地了解来自不同SES背景,在各个学校SES阶层中的中学生的阅读,数学和科学成就。这项更细粒度的次级分析表明,学校总SES的增加与学生学习成绩的提高始终如一且密切相关,并且这种关系适用于所有学生,无论他们的个人SES如何。在澳大利亚的情况下,学校的综合社会经济状况对学业成绩至关重要。我们在演讲结束时讨论了这些发现对澳大利亚联邦学校资助政策的影响,并特别关注学校组成对学生成绩的影响。

著录项

  • 作者

    McConney A.; Perry L.B.;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号