首页> 外文期刊>Journal of robotics and mechatronics >Network Connectivity Control of Mobile Robots by Fast Position Estimations and Laplacian Kernel
【24h】

Network Connectivity Control of Mobile Robots by Fast Position Estimations and Laplacian Kernel

机译:快速定位估计和拉普拉斯内核的移动机器人网络连接控制

获取原文
获取原文并翻译 | 示例

摘要

Together with wireless distributed sensor technologies, the connectivity control of mobile robot networks has widely expanded in recent years. Network connectivity has been greatly improved by theoretical frameworks based on graph theory. Most network connectivity studies have focused on algebraic connectivity and the Fiedler vector, which constitutes a network structure matrix eigenpair. Theoretical graph frameworks have popularly been adopted in robot deployment studies; however, the eigenpairs' computation requires quite a lot of iterative calculations and is extremely time-intensive. In the present study, we propose a robot deployment algorithm that only requires a finite iterative calculation. The proposed algorithm rapidly estimates the robot positions by solving reaction-diffusion equations on the graph, and gradient methods using a Laplacian kernel. The effectiveness of the algorithm is evaluated in computer simulations of mobile robot networks. Furthermore, we implement the algorithm in the actual hardware of a two-wheeled robot.
机译:与无线分布式传感器技术一起,移动机器人网络的连接控制近年来广泛扩大。基于图论的理论框架,网络连接得到了大大改善。大多数网络连接研究专注于代数连接和Fiedler向量,这构成了网络结构矩阵eigenpair。理论图框架在机器人部署研究中普遍采用;然而,特征环的计算需要很多迭代计算,并且是非常近期的。在本研究中,我们提出了一种机器人部署算法,该算法仅需要有限迭代计算。该算法通过求解图中的反应扩散方程来迅速估计机器人位置,以及使用拉普拉斯内核的梯度方法。在移动机器人网络的计算机模拟中评估了算法的有效性。此外,我们在两轮机器人的实际硬件中实现了算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号