首页> 外文学位 >Distributed Intermittent Connectivity Control of Mobile Robot Networks
【24h】

Distributed Intermittent Connectivity Control of Mobile Robot Networks

机译:移动机器人网络的分布式间歇连接控制

获取原文
获取原文并翻译 | 示例

摘要

Wireless communication is known to play a pivotal role in enabling teams of robots to successfully accomplish global coordinated tasks. In fact, network connectivity is an underlying assumption in every distributed control and optimization algorithm. For this reason, in recent years, there is growing research in designing controllers that ensure point-to-point or end-to-end network connectivity for all time. Nevertheless, all these methods severely restrict the robots from accomplishing their tasks, as motion planning is always restricted by connectivity constraints on the network. Instead, a much preferred solution is to enable robots to communicate in an intermittent fashion, and operate in disconnect mode the rest of the time giving rise to an intermittently connected communication network. While in disconnect mode, the robots can accomplish their tasks free of communication constraints. The goal of this dissertation is to design a distributed intermittent connectivity framework that (i) ensures that the communication network is connected over time, infinitely often (ii) is flexible enough to account for arbitrary dynamic tasks, and (iii) can be applied to large-scale networks.;The great challenge in developing intermittent connectivity protocols for networks of mobile robots is to decide (i) which robots talk to which, (ii) where, and (iii) when, so that the communication network is connected over time infinitely often. To address these challenges, we decompose the network into small groups of robots, also called teams, so that every robot belongs to at least one team and that there is a path, i.e., a sequence of teams, where consecutive teams have non-empty intersections, connecting every two teams of robots, so that information can propagate in the network. First, given such fixed teams, we design infinite sequences of communication events for all robots, also called communication schedules, independent of the tasks assigned to the robots, that determine when every team should communicate, so that the communication network is connected over time infinitely often. The designed communication schedules ensure that all teams communicate infinitely often, i.e., that the communication network is connected over time infinitely often. Between communication events the robots can move in the workspace free of communication constraints to accomplish their assigned tasks. Theoretical guarantees and numerical experiments corroborate the proposed framework. This is the first distributed intermittent connectivity framework that can be applied to large-scale networks and is flexible enough to account for arbitrary dynamic robot tasks.;Next, given user-specified fixed teams, we integrate the respective communication schedules with task planning. Specifically, we consider high-level complex tasks captured by temporal logic formulas, state-estimation tasks, and time-critical dynamic tasks. The proposed distributed integrated path planning and intermittent connectivity frameworks determine both where and when every team should communicate so that the assigned task is accomplished, the communication network is connected over time infinitely often, and a user-specified metric, such as total traveled distance or consumed energy, is minimized. We show that employing the proposed intermittent connectivity framework for such tasks results in significant performance gains compared to the existing solutions in the literature that maintain connectivity for all time. Theoretical guarantees, numerical and experimental studies support the proposed distributed control algorithms.;Finally, we propose a fully autonomous intermittent connectivity framework that can handle arbitrary dynamic tasks and also allows the robots to locally and online update the structure of the teams and the communication schedules, effectively allowing them to decide who they should talk to, so that they can better accomplish newly assigned tasks. The structure of the teams, the associated communication locations, and the time instants when communication within teams will occur are integrated online with task planning giving rise to paths, i.e., sequences of waypoints, that ensure that the assigned task is accomplished, the communication network is connected over time infinitely often, and a user specified metric is minimized. This is the first fully autonomous, distributed, and online intermittent connectivity framework that can handle arbitrary dynamic tasks and also controls the topology of the intermittently connected robot network to better accomplish these tasks. At the same time, the proposed framework scales well with the size of the robot network. Theoretical guarantees and numerical experiments corroborate the proposed distributed control scheme.
机译:众所周知,无线通信在使机器人团队成功完成全球协调任务方面起着举足轻重的作用。实际上,网络连接是每个分布式控制和优化算法的基础假设。因此,近年来,在设计控制器以确保始终保持点对点或端到端网络连接的研究不断增长。尽管如此,所有这些方法都严重限制了机器人完成其任务,因为运动计划始终受网络连接限制的约束。相反,一种更可取的解决方案是使机器人能够以间歇方式进行通信,并在其余时间以断开模式运行,从而形成间歇性连接的通信网络。在断开模式下,机器人可以不受通信约束地完成其任务。本文的目的是设计一个分布式的间歇性连接框架,该框架(i)确保通信网络随着时间的推移而无限地连接(ii)足够灵活以应对任意动态任务,并且(iii)可以应用于开发用于移动机器人网络的间歇性连接协议的最大挑战是确定(i)哪些机器人与之对话,(ii)在何处以及(iii)何时与之通信,以便通过该网络进行通信。无限的时间。为了应对这些挑战,我们将网络分解为几组机器人,也称为团队,以便每个机器人至少属于一个团队,并且存在一条路径,即一系列团队,其中连续的团队具有非空的交叉路口,将每两个机器人团队连接起来,以便信息可以在网络中传播。首先,在给定了这样的固定团队的情况下,我们为所有机器人设计了无限的通信事件序列,也称为通信时间表,与分配给机器人的任务无关,它确定了每个团队何时应该进行通信,从而使通信网络随时间无限地连接经常。设计的通讯时间表可确保所有团队之间进行无限频繁的交流,即,随着时间的推移,通讯网络将无限频繁地进行连接。在通信事件之间,机器人可以不受通信约束地在工作空间中移动,以完成分配的任务。理论上的保证和数值实验证实了所提出的框架。这是第一个可应用于大型网络的分布式间歇性连接框架,并且足够灵活以处理任意动态机器人任务。接下来,给定用户指定的固定团队,我们将各自的通信时间表与任务计划集成在一起。具体来说,我们考虑由时态逻辑公式捕获的高级复杂任务,状态估计任务和时间紧迫的动态任务。提议的分布式集成路径规划和间歇性连接框架确定了每个团队应在何时何地进行通信,以便完成分配的任务,通信网络在时间上无限制地频繁连接,并指定了用户指定的度量标准,例如总行驶距离或消耗的能量最小化。我们表明,与文献中始终保持连通性的现有解决方案相比,针对此类任务采用建议的间歇性连通性框架可显着提高性能。理论上的保证,数值研究和实验研究均支持所提出的分布式控制算法。最后,我们提出了一种完全自主的间歇性连接框架,该框架可以处理任意动态任务,并且还允许机器人在本地和在线更新团队的结构和通信时间表,有效地让他们决定应该与谁交谈,以便他们可以更好地完成新分配的任务。团队的结构,相关的通信位置以及团队内部进行通信的时间与任务计划在线集成在一起,从而产生了路径,即路点序列,以确保完成分配的任务,通信网络在一段时间内会无限频繁地进行连接,并且将用户指定的指标最小化。这是第一个完全自治,分布式和在线的间歇性连接框架,该框架可以处理任意动态任务,还可以控制间歇性连接的机器人网络的拓扑,以更好地完成这些任务。同时,提出的框架可以随着机器人网络的规模很好地扩展。理论上的保证和数值实验证实了所提出的分布式控制方案。

著录项

  • 作者

    Kantaros, Yiannis.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Robotics.;Communication.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 216 p.
  • 总页数 216
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号