首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >Supply Switching With Ground Collapse: Simultaneous Control of Subthreshold and Gate Leakage Current in Nanometer-Scale CMOS Circuits
【24h】

Supply Switching With Ground Collapse: Simultaneous Control of Subthreshold and Gate Leakage Current in Nanometer-Scale CMOS Circuits

机译:具有地塌陷的电源开关:同时控制纳米级CMOS电路中的亚阈值和栅极泄漏电流

获取原文
获取原文并翻译 | 示例

摘要

Power gating has been widely used to reduce subthreshold leakage. However, the efficiency of power gating degrades very fast with technology scaling, which we demonstrate by experiment. This is due to the gate leakage of circuits specific to power gating, such as storage elements and output interface circuits with a data-retention capability. A new scheme called supply switching with ground collapse is proposed to control both gate and subthreshold leakage in nanometer-scale CMOS circuits. Compared to power gating, the leakage is cut by a factor of 6.3 with 65-nm and 8.6 with 45-nm technology. Various issues in implementing the proposed scheme using standard-cell elements are addressed, from register transfer level to layout. These include the choice of standby supply voltage with circuits that support it, a power network architecture for designs based on standard-cell elements, a current switch design methodology, several circuit elements specific to the proposed scheme, and the design flow that encompasses all the components. The proposed design flow is demonstrated on a commercial design with 90-nm technology, and the leakage saving by a factor of 32 is observed with 3% and 6% of increase in area and wirelength, respectively.
机译:电源门控已被广泛用于减少亚阈值泄漏。但是,随着技术的扩展,电源门控的效率会很快下降,我们通过实验证明了这一点。这是由于电源门控专用电路(例如具有数据保留功能的存储元件和输出接口电路)的栅极泄漏引起的。提出了一种新的方案,该方案称为具有地崩塌的电源开关,以控制纳米级CMOS电路中的栅极和亚阈值泄漏。与电源门控相比,采用65纳米技术时,泄漏可减少6.3倍;采用45纳米技术时,泄漏可减少8.6倍。从寄存器传输级别到布局,解决了使用标准单元元素实施建议方案时出现的各种问题。这些措施包括选择支持其的电路的备用电源电压,用于基于标准单元元件的设计的电源网络架构,电流开关设计方法,特定于所建议方案的几个电路元件以及涵盖所有设计要素的设计流程。组件。拟议的设计流程已在采用90纳米技术的商业设计中得到了证明,并且在面积和导线长度分别增加3%和6%的情况下,可以节省32倍的泄漏。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号