首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Transferring Knowledge Fragments for Learning Distance Metric from a Heterogeneous Domain
【24h】

Transferring Knowledge Fragments for Learning Distance Metric from a Heterogeneous Domain

机译:传输知识片段以从异构域学习距离度量

获取原文
获取原文并翻译 | 示例

摘要

The goal of transfer learning is to improve the performance of target learning task by leveraging information (or transferring knowledge) from other related tasks. In this paper, we examine the problem of transfer distance metric learning (DML), which usually aims to mitigate the label information deficiency issue in the target DML. Most of the current Transfer DML (TDML) methods are not applicable to the scenario where data are drawn from heterogeneous domains. Some existing heterogeneous transfer learning (HTL) approaches can learn target distance metric by usually transforming the samples of source and target domain into a common subspace. However, these approaches lack flexibility in real-world applications, and the learned transformations are often restricted to be linear. This motivates us to develop a general flexible heterogeneous TDML (HTDML) framework. In particular, any (linearonlinear) DML algorithms can be employed to learn the source metric beforehand. Then the pre-learned source metric is represented as a set of knowledge fragments to help target metric learning. We show how generalization error in the target domain could be reduced using the proposed transfer strategy, and develop novel algorithm to learn either linear or nonlinear target metric. Extensive experiments on various applications demonstrate the effectiveness of the proposed method.
机译:转移学习的目的是通过利用其他相关任务中的信息(或转移知识)来提高目标学习任务的性能。在本文中,我们研究了传输距离度量学习(DML)的问题,该问题通常旨在减轻目标DML中的标签信息不足问题。当前的大多数Transfer DML(TDML)方法不适用于从异构域中提取数据的方案。一些现有的异构传输学习(HTL)方法通常可以通过将源域和目标域的样本转换为公共子空间来学习目标距离度量。但是,这些方法在实际应用中缺乏灵活性,并且学习到的转换通常被限制为线性的。这激励我们开发通用的灵活异构TDML(HTDML)框架。特别地,可以使用任何(线性/非线性)DML算法来预先学习源度量。然后,将预学习的源度量表示为一组知识片段,以帮助目标度量学习。我们展示了如何使用提出的传输策略来减少目标域中的泛化误差,并开发出新颖的算法来学习线性或非线性目标度量。在各种应用上的大量实验证明了该方法的有效性。

著录项

  • 来源
  • 作者单位

    Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore;

    Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore;

    Univ Sydney, UBTECH Sydney Artificial Intelligence Ctr, Fac Engn & Informat Technol, 6 Cleveland St, Darlington, NSW 2008, Australia|Univ Sydney, Sch Informat Technol, Fac Engn & Informat Technol, 6 Cleveland St, Darlington, NSW 2008, Australia;

    Univ Sydney, UBTECH Sydney Artificial Intelligence Ctr, Fac Engn & Informat Technol, 6 Cleveland St, Darlington, NSW 2008, Australia|Univ Sydney, Sch Informat Technol, Fac Engn & Informat Technol, 6 Cleveland St, Darlington, NSW 2008, Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Transfer learning; distance metric learning; heterogeneous domains; knowledge fragments; nonlinear;

    机译:转移学习距离度量学习异构域知识片段非线性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号