首页> 外文期刊>Computational Intelligence >Adaptive transfer learning in deep neural networks: Wind power prediction using knowledge transfer from region to region and between different task domains
【24h】

Adaptive transfer learning in deep neural networks: Wind power prediction using knowledge transfer from region to region and between different task domains

机译:深层神经网络中的自适应转移学习:使用知识从区域到区域以及不同任务域之间的转移进行风能预测

获取原文
获取原文并翻译 | 示例

摘要

Transfer learning (TL) in deep neural networks is gaining importance because, in most of the applications, the labeling of data is costly and time consuming. Additionally, TL also provides an effective weight initialization strategy for deep neural networks. This paper introduces the idea of adaptive TL in deep neural networks (ATL-DNN) for wind power prediction. Specifically, we show in case of wind power prediction that adaptive TL of the deep neural networks system can be adaptively modified as regards training on a different wind farm is concerned. The proposed ATL-DNN technique is tested for short-term wind power prediction, where continuously arriving information has to be exploited. Adaptive TL not only helps in providing good weight initialization, but also in utilizing the incoming data for effective learning. Additionally, the proposed ATL-DNN technique is shown to transfer knowledge between different task domains (wind power to wind speed prediction) and from one region to another region. The simulation results show that the proposed ATL-DNN technique achieves average values of 0.0637, 0.0986, and 0.0984 for the mean absolute error, root mean squared error, and standard deviation error, respectively.
机译:深度神经网络中的转移学习(TL)变得越来越重要,因为在大多数应用程序中,数据标记既昂贵又费时。此外,TL还为深度神经网络提供了有效的权重初始化策略。本文介绍了在深度神经网络(ATL-DNN)中用于风电功率预测的自适应TL的思想。具体来说,我们展示了在风能预测的情况下,就不同风电场的训练而言,可以对深度神经网络系统的自适应TL进行自适应修改。所提出的ATL-DNN技术已针对短期风能预测进行了测试,其中必须利用连续到达的信息。自适应TL不仅有助于提供良好的权重初始化,而且还有助于利用传入的数据进行有效的学习。此外,所示的拟议ATL-DNN技术可在不同任务域(从风能到风速预测)之间以及从一个区域到另一区域之间传递知识。仿真结果表明,所提出的ATL-DNN技术的平均绝对误差,均方根误差和标准偏差误差分别达到0.0637、0.0986和0.0984的平均值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号