首页> 外文期刊>Neurocomputing >Neural coupled central pattern generator based smooth gait transition of a biomimetic hexapod robot
【24h】

Neural coupled central pattern generator based smooth gait transition of a biomimetic hexapod robot

机译:基于神经耦合的中央图案发电机的仿生六角机器人的光滑步态转换

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel Central Pattern Generator (CPG) network topology based locomotion control strategy for a smooth gait transition of a biomimetic hexapod robot is proposed. Some preliminaries and correlations have been discussed to provide more suitable CPG network topology for both gait patterns that adapt to different environments, both in terms of transient state time and amplitude overshoot. The design network structure is developed with bidirectional diffusive coupling topologies to obtain robustness and efficient gait transitions. The stability of the proposed network is proved using coupling analyses. In contrast to conventional methods in the CPG network, the proposed method provides remarkable results that could generate four typical hexapod gaits transitions under rapid transient-state and steadystate conditions depending on the frequency, amplitude, and phase relationships among neurons. In order to govern the swing and stance phases according to the proposed network, the leg trajectory generator is designed and an inverse kinematics module is added to compute the link angles of the legs. By applying the proposed locomotion control strategy, the hexapod robot is capable of performing stable and rapid walking gaits. The simulation and experimental results show the effectiveness of the proposed method. High motion ability with the proposed network topology is provided considering walking frequency, forward speed, gait transition time, transient-state time, and steady-state comparisons with the literature. (C) 2020 Elsevier B.V. All rights reserved.
机译:本文提出了一种新的中央图案发生器(CPG)基于基于仿生六角机器人转变的基于基于基于仿生转变的机置控制策略。已经讨论了一些预备和相关性,为适应不同环境的步态模式提供更合适的CPG网络拓扑,这两者都在瞬态状态时间和幅度过冲。设计网络结构是通过双向扩散耦合拓扑开发的,以获得鲁棒性和高效的步态过渡。使用耦合分析证明了所提出的网络的稳定性。与CPG网络中的传统方法相比,所提出的方法提供了显着的结果,该结果可以根据神经元之间的频率,幅度和相位关系产生四种典型的六足球菌在快速瞬态和稳态条件下产生的结果。为了控制根据所提出的网络的摆动和姿势阶段,设计了腿部轨迹发生器,并添加了逆运动学模块以计算腿的连杆角度。通过应用所提出的机器人控制策略,Hexapod机器人能够执行稳定且快速行走的Gaits。模拟和实验结果表明了该方法的有效性。考虑到所提出的网络拓扑的高运动能力考虑了步行频率,前进速度,步态过渡时间,瞬态状态和与文献的稳态比较。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号