首页> 外文期刊>IEEE Robotics & Automation Magazine >Trial and Error: Using Previous Experiences as Simulation Models in Humanoid Motor Learning
【24h】

Trial and Error: Using Previous Experiences as Simulation Models in Humanoid Motor Learning

机译:反复试验:以以往的经验作为仿人运动学习的仿真模型

获取原文
获取原文并翻译 | 示例

摘要

Since biological systems have the ability to efficiently reuse previous experiences to change their behavioral strategies to avoid enemies or find food, the number of required samples from real environments to improve behavioral policy is greatly reduced. Even for real robotic systems, it is desirable to use only a limited number of samples from real environments due to the limited durability of real systems to reduce the required time to improve control performance. In this article, we used previous experiences as environmental local models so that the movement policy of a humanoid robot can be efficiently improved with a limited number of samples from its real environment. We applied our proposed learning method to a real humanoid robot and successfully achieve two challenging control tasks. We applied our proposed learning approach to acquire a policy for a cart-pole swing-up task in a real-virtual hybrid task environment, where the robot waves a PlayStation (PS) Move motion controller to move a cart-pole in a virtual simulator. Furthermore, we applied our proposed method to a challenging basketball-shooting task in a real environment.
机译:由于生物系统具有有效利用以前的经验来改变其行为策略以避免敌人或寻找食物的能力,因此从真实环境中改善行为策略所需的样本数量大大减少了。即使对于真实的机器人系统,由于真实系统的耐用性有限,也希望仅使用真实环境中有限数量的样本,以减少改善控制性能所需的时间。在本文中,我们将以前的经验用作环境局部模型,以便可以从有限数量的真实环境样本中有效地改善类人机器人的运动策略。我们将提出的学习方法应用于一个真正的人形机器人,并成功完成了两个具有挑战性的控制任务。我们应用了我们提出的学习方法,以在真实虚拟混合任务环境中获得解决方案,其中机器人挥动PlayStation(PS)移动运动控制器以在虚拟模拟器中移动解决方案。此外,我们将提出的方法应用于现实环境中具有挑战性的篮球射击任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号