首页> 外文期刊>IEEE Robotics and Automation Letters >Learning Natural Locomotion Behaviors for Humanoid Robots Using Human Bias
【24h】

Learning Natural Locomotion Behaviors for Humanoid Robots Using Human Bias

机译:使用人偏见学习人形机器人的自然运动行为

获取原文
获取原文并翻译 | 示例

摘要

This letter presents a new learning framework that leverages the knowledge from imitation learning, deep reinforcement learning, and control theories to achieve human-style locomotion that is natural, dynamic, and robust for humanoids. We proposed novel approaches to introduce human bias, i.e. motion capture data and a special Multi-Expert network structure. We used the Multi-Expert network structure to smoothly blend behavioral features, and used the augmented reward design for the task and imitation rewards. Our reward design is composable, tunable, and explainable by using fundamental concepts from conventional humanoid control. We rigorously validated and benchmarked the learning framework which consistently produced robust locomotion behaviors in various test scenarios. Further, we demonstrated the capability of learning robust and versatile policies in the presence of disturbances, such as terrain irregularities and external pushes.
机译:这封信介绍了一种新的学习框架,利用仿古,深增强学习和控制理论来实现人类样式的人类机器,这是一种自然,动态和人形的人类样品。我们提出了新颖的介绍人类偏见的方法,即运动捕获数据和特殊的多专家网络结构。我们使用了多专家网络结构来平滑混合行为特征,并使用了对任务和模仿奖励的增强奖励设计。我们的奖励设计是可组合的,可调和解释的,通过使用传统的人形控制的基本概念。我们严格验证和基准测试框架,在各种测试场景中始终如一地产生的强大的机器人行为。此外,我们展示了在存在干扰的情况下学习强大和多功能政策的能力,例如地形不规则和外部推动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号