首页> 中文期刊> 《计算机测量与控制》 >基于深度强化学习的移动机器人导航策略研究

基于深度强化学习的移动机器人导航策略研究

     

摘要

针对移动机器人在复杂动态变化的环境下导航的局限性,采用了一种将深度学习和强化学习结合起来的深度强化学习方法;研究以在OpenCV平台下搭建的仿真环境的图像作为输入数据,输入至TensorFlow创建的卷积神经网络模型中处理,提取其中的机器人的动作状态信息,结合强化学习的决策能力求出最佳导航策略;仿真实验结果表明:在经过深度强化学习的方法训练后,移动机器人在环境发生了部分场景变化时,依然能够实现随机起点到随机终点的高效准确的导航.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号