首页> 外文期刊>Future generation computer systems >Optimization of lightweight task offloading strategy for mobile edge computing based on deep reinforcement learning
【24h】

Optimization of lightweight task offloading strategy for mobile edge computing based on deep reinforcement learning

机译:基于深度强化学习的移动边缘计算轻量级任务卸载策略优化

获取原文
获取原文并翻译 | 示例

摘要

With the maturity of 5G technology and the popularity of intelligent terminal devices, the traditional cloud computing service model cannot deal with the explosive growth of business data quickly. Therefore, the purpose of mobile edge computing (MEC) is to effectively solve problems such as latency and network load. In this paper, deep reinforcement learning (DRL) is first proposed to solve the offloading problem of multiple service nodes for the cluster and multiple dependencies for mobile tasks in large-scale heterogeneous MEC. Then the paper uses the LSTM network layer and the candidate network set to improve the DQN algorithm in combination with the actual environment of the MEC. Finally, the task offloading problem is simulated by using iFogSim and Google Cluster Trace. The simulation results show that the offloading strategy based on the improved IDRQN algorithm has better performance in energy consumption, load balancing, latency and average execution time than other algorithms. (C) 2019 Elsevier B.V. All rights reserved.
机译:随着5G技术的成熟和智能终端设备的普及,传统的云计算服务模型无法快速应对业务数据的爆炸性增长。因此,移动边缘计算(MEC)的目的是有效解决诸如延迟和网络负载之类的问题。本文首先提出了深度强化学习(DRL),以解决大规模异构MEC中集群的多个服务节点和移动任务的多个依存关系的卸载问题。然后,本文结合LSTM网络层和候选网络集,结合MEC的实际环境对DQN算法进行了改进。最后,使用iFogSim和Google Cluster Trace模拟了任务卸载问题。仿真结果表明,基于改进的IDRQN算法的分流策略在能耗,负载均衡,等待时间和平均执行时间方面均优于其他算法。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号