首页> 外文会议>Emerging Lithographic Technologies X pt.2 >Effect of charged-particle bombardment on collector mirror reflectivity in EUV lithography devices
【24h】

Effect of charged-particle bombardment on collector mirror reflectivity in EUV lithography devices

机译:带电粒子轰击对EUV光刻设备中集电极镜反射率的影响

获取原文
获取原文并翻译 | 示例

摘要

EUV metallic light radiators such as Sn or Li used for lithography will limit the lifetime of collector optics in source devices by both contamination and irradiation. Generation of EUV light requires the use of hot, dense plasma. Pinch dynamics generates fast ions and atoms, such as metallic sources (Sn, Li) with energies ranging from 100 eV up to several keV. The expanding Sn plasma will thermalize and condense in nearby components, including the debris shield and collector optics. The incident distribution of debris onto the collector optics will likely include Sn fast ions. Sn contamination will lead to two different mechanisms. One is condensation and Sn thin-film buildup on the reflective optics surface (i.e., Ru or Pd mirror) from the thermalized Sn plasma. This mechanism will lead to performance failure after about 1-2 nm build up of Sn thin film whereby the at-wavelength EUV reflectivity will decrease 20% in magnitude for grazing incident angles less than 20-degrees. The second mechanism is more complex. Fast Sn ions generated at the pinch will reach the collector optics and induce mixing, sputtering, and implant at depths between 3 and 5 monolayers on the Ru or Pd surface. EUV light can also induce ionization in background Ar or He gas used for debris mitigation. Low-energy Ar or He ions therefore impinge on the collector mirror surface at threshold-level energies between 40 and 100 eV. A steady-state Sn surface concentration will be attained after a given fluence of both Sn debris and low-energy Ar ions. The amount of Sn implanted or deposited will affect EUV reflectivity as a function of ion and/or atom fluence. Sn contamination mechanisms, as well as threshold-level sputtering from inert ion species, are studied in the IMPACT (Interaction of Materials with charged Particles and Components Testing) experiment. Sn exposure conditions include incident singly charged particles between 500 and 1000 eV, oblique incidence and incident fluxes ranging from 10~(11) to 10~(14) ions/cm~2/s. In-situ surface metrology includes sputter yield diagnosis, Auger electron spectroscopy, X-ray photoelectron spectroscopy, direct recoil spectroscopy and low-energy ion scattering spectroscopy, and at-wavelength EUV reflectivity.
机译:用于光刻的EUV金属光辐射器(例如Sn或Li)将通过污染和辐射来限制源设备中收集器光学器件的寿命。 EUV光的产生需要使用热的密集等离子体。捏动态会生成快速离子和原子,例如能量范围从100 eV到几keV的金属源(Sn,Li)。不断膨胀的锡等离子体将在附近的组件(包括碎片防护罩和收集器光学器件)中加热并冷凝。碎片在收集器光学器件上的入射分布很可能包括Sn快离子。锡的污染将导致两种不同的机理。一种是由热的锡等离子体在反射光学表面(即Ru或Pd镜)上形成冷凝和Sn薄膜。此机制将在大约1-2 nm的Sn薄膜堆积后导致性能下降,从而在掠射入射角小于20度时,波长EUV反射率的幅度将降低20%。第二种机制更复杂。在收缩处产生的快速Sn离子将到达集电极光学器件,并在Ru或Pd表面上3到5个单层的深度引起混合,溅射和注入。 EUV光还可以在用于减少碎片的背景Ar或He气体中诱导电离。因此,低能量的Ar或He离子以40至100 eV之间的阈值能级撞击在集电极镜表面上。在一定的通量下,Sn碎片和低能Ar离子都将达到稳态的Sn表面浓度。注入或沉积的锡量将影响EUV反射率,该反射率是离子和/或原子通量的函数。在IMPACT(材料与带电粒子和成分测试的相互作用)实验中研究了Sn污染机理以及惰性离子物种的阈值水平溅射。锡的暴露条件包括入射单电荷粒子在500至1000 eV之间,倾斜入射和入射通量范围为10〜(11)至10〜(14)离子/ cm〜2 / s。原位表面计量学包括溅射产率诊断,俄歇电子能谱,X射线光电子能谱,直接反冲能谱和低能离子散射能谱以及在波长下的EUV反射率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号