首页> 外文OA文献 >Development of high yield fabrication technology for graphene quantum dots for single electron transistor applications
【2h】

Development of high yield fabrication technology for graphene quantum dots for single electron transistor applications

机译:开发高产量制造技术用于单电子的石墨烯量子点晶体管应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Since the seminal work by Loss and DiVincenzo, quantum dots (QDs) have been extensively studied as building blocks for quantum information processing (QIP). Presently, the most advanced implementations of QD qubits are realised in III/V heterostructures (GaAs/AlGaAs). However, the strong spin-orbit and hyperfine interactions in these compounds pose fundamental limits to the spin coherence time, and so stimulating the search for alternative host materials.Graphene, a two-dimensional single atomic layer of carbon atoms, was successfully produced for the first time in 2004. Despite its short history, its unique material properties have ensured a rapid growth of interest in several areas of science and technology. Spin-orbit coupling and hyperfine interaction with carbon nuclei are both small in graphene, and a very long spin relaxation length has been demonstrated, which make graphene a promising candidate for quantum information technology and spin qubit embodiment.Superior transport properties of graphene encourage the downscaling of graphene devices to the regime where coherent nature of electronic and spin states can be fully exploited. This requires the development of ultrafine patterning technologies which enables accurate nanoscale fabrication beyond the present electron-beam lithography technique. Therefore, inspired by the on-going trend towards device miniaturization, we present a novel hybrid fabrication method for graphene nano devices (e.g. graphene QDs devices) with minimum feature sizes of ~3 nm (i.e. the gap between the graphene side-gates and channel). Here, for the first time we combine conventional e-beam lithography and direct milling with the sub-nm focused helium ion beam generated by a helium ion microscope to fabricate high resolution graphene QDs devices, reliably and reproducibly. The highly controllable, fine scale fabrication capabilities offered by this approach could lead to a more detailed understanding of the electrical characteristics of graphene quantum devices and pave the way towards room-temperature operable grapheme quantum dot devices.
机译:自Loss和DiVincenzo开展开创性工作以来,作为量子信息处理(QIP)的基础材料,量子点(QD)已得到广泛研究。当前,最先进的QD量子位实现是在III / V异质结构(GaAs / AlGaAs)中实现的。然而,这些化合物中强大的自旋轨道和超精细相互作用对自旋相干时间构成了根本限制,因此刺激了寻找替代主体材料的研究。石墨烯是碳原子的二维单原子层,已成功地制备了碳原子。这是2004年的第一次。尽管历史短,但其独特的材料特性确保了在科学和技术领域的兴趣迅速增长。石墨烯的自旋轨道耦合和与碳核的超精细相互作用都很小,并且已经证明了非常长的自旋弛豫长度,这使石墨烯成为量子信息技术和自旋量子位体现的有前途的候选者。石墨烯器件的发展可以充分利用电子态和自旋态的相干性。这需要开发超精细的图案化技术,该技术能够实现超越当前电子束光刻技术的精确纳米级制造。因此,受器件小型化趋势的启发,我们提出了一种新的混合制备方法,用于最小特征尺寸约为3 nm(即,石墨烯侧栅与沟道之间的间隙)的石墨烯纳米器件(例如,石墨烯QDs器件)。 )。在这里,我们首次将传统的电子束光刻技术和直接铣削技术与氦离子显微镜产生的亚纳米聚焦氦离子束结合在一起,可可靠且可重复地制造高分辨率石墨烯QDs器件。这种方法提供的高度可控的,精细的制造能力可以导致对石墨烯量子器件的电特性的更详细的了解,并为室温可操作的石墨烯量子点器件铺平道路。

著录项

  • 作者

    Kalhor Nima;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号