首页> 外文OA文献 >Stiffness based trajectory planning and feedforward based vibration suppression control of parallel robot machines
【2h】

Stiffness based trajectory planning and feedforward based vibration suppression control of parallel robot machines

机译:并联机器人的基于刚度的轨迹规划和基于前馈的振动抑制控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The dissertation proposes two control strategies, which include the trajectory planningand vibration suppression, for a kinematic redundant serial-parallel robot machine, withthe aim of attaining the satisfactory machining performance.For a given prescribed trajectory of the robot's end-effector in the Cartesian space, a setof trajectories in the robot's joint space are generated based on the best stiffnessperformance of the robot along the prescribed trajectory.To construct the required system-wide analytical stiffness model for the serial-parallelrobot machine, a variant of the virtual joint method (VJM) is proposed in the dissertation.The modified method is an evolution of Gosselin's lumped model that can account for thedeformations of a flexible link in more directions. The effectiveness of this VJM variantis validated by comparing the computed stiffness results of a flexible link with the thoseof a matrix structural analysis (MSA) method. The comparison shows that the numericalresults from both methods on an individual flexible beam are almost identical, which, insome sense, provides mutual validation. The most prominent advantage of the presentedVJM variant compared with the MSA method is that it can be applied in a flexiblestructure system with complicated kinematics formed in terms of flexible serial links andjoints. Moreover, by combining the VJM variant and the virtual work principle, a systemwideanalytical stiffness model can be easily obtained for mechanisms with both serialkinematics and parallel kinematics. In the dissertation, a system-wide stiffness model of akinematic redundant serial-parallel robot machine is constructed based on integration ofthe VJM variant and the virtual work principle. Numerical results of its stiffnessperformance are reported.For a kinematic redundant robot, to generate a set of feasible joints' trajectories for aprescribed trajectory of its end-effector, its system-wide stiffness performance is taken as the constraint in the joints trajectory planning in the dissertation. For a prescribedlocation of the end-effector, the robot permits an infinite number of inverse solutions,which consequently yields infinite kinds of stiffness performance. Therefore, adifferential evolution (DE) algorithm in which the positions of redundant joints in thekinematics are taken as input variables was employed to search for the best stiffnessperformance of the robot. Numerical results of the generated joint trajectories are givenfor a kinematic redundant serial-parallel robot machine, IWR (IntersectorWelding/Cutting Robot), when a particular trajectory of its end-effector has beenprescribed. The numerical results show that the joint trajectories generated based on thestiffness optimization are feasible for realization in the control system since they areacceptably smooth. The results imply that the stiffness performance of the robot machinedeviates smoothly with respect to the kinematic configuration in the adjacent domain ofits best stiffness performance.To suppress the vibration of the robot machine due to varying cutting force during themachining process, this dissertation proposed a feedforward control strategy, which isconstructed based on the derived inverse dynamics model of target system. Theeffectiveness of applying such a feedforward control in the vibration suppression hasbeen validated in a parallel manipulator in the software environment. The experimentalstudy of such a feedforward control has also been included in the dissertation. Thedifficulties of modelling the actual system due to the unknown components in itsdynamics is noticed. As a solution, a back propagation (BP) neural network is proposedfor identification of the unknown components of the dynamics model of the target system.To train such a BP neural network, a modified Levenberg-Marquardt algorithm that canutilize an experimental input-output data set of the entire dynamic system is introduced inthe dissertation. Validation of the BP neural network and the modified Levenberg-Marquardt algorithm is done, respectively, by a sinusoidal output approximation, asecond order system parameters estimation, and a friction model estimation of a parallelmanipulator, which represent three different application aspects of this method.
机译:为了达到令人满意的加工性能,本文提出了一种运动学冗余串并联机器人机器的轨迹控制和振动抑制两种控制策略。对于给定的笛卡尔空间中的末端执行器轨迹,根据机器人在规定轨迹上的最佳刚度性能,在机器人关节空间中生成一组轨迹。为构建串并联机器人机器所需的全系统分析刚度模型,是虚拟关节方法(VJM)的一种变体改进的方法是Gosselin集总模型的发展,它可以解释柔性链在更多方向上的变形。通过比较柔性连杆的刚度结果与矩阵结构分析(MSA)方法的刚度结果,可以验证此VJM变体的有效性。比较表明,两种方法在单个柔性梁上的数值结果几乎相同,从某种意义上说,这提供了相互验证。与MSA方法相比,所呈现的VJM变体的最突出优势在于,它可以应用于具有复杂运动学的柔性结构系统,这些运动学根据柔性串行链接和关节而形成。此外,通过将VJM变体与虚拟工作原理相结合,可以轻松获得具有系列运动学和并联运动学的机构的全系统分析刚度模型。本文基于VJM变体与虚拟工作原理的集成,构建了运动学冗余串并联机器人系统的全系统刚度模型。报告了其刚度性能的数值结果。对于运动学冗余机器人,为生成其末端执行器的预定轨迹的一组可行的关节轨迹,将其全系统刚度性能作为约束中关节轨迹规划的约束。论文。对于末端执行器的规定位置,机器人允许无限数量的逆解,因此产生无限多种刚度性能。因此,采用以运动学中多余关节的位置为输入变量的差分进化算法(DE),以寻求机器人的最佳刚度性能。当规定了末端执行器的特定轨迹时,给出了运动学冗余串并联机器人机器IWR(IntersectorWelding / Cutting Robot)的生成关节轨迹的数值结果。数值结果表明,基于刚度优化产生的关节轨迹可以平滑地实现在控制系统中。结果表明,机器人的刚度性能相对于其最佳刚度性能的相邻区域中的运动学构造平滑地偏离。为抑制由于机械加工过程中切削力变化引起的机器人机械振动,本文提出了一种前馈控制该策略是基于目标系统的逆动力学模型构造的。在振动抑制中应用这种前馈控制的有效性已经在软件环境中的并行操纵器中得到验证。这种前馈控制的实验研究也包括在本文中。注意到由于其动力学中未知的组件而对实际系统进行建模的困难。作为解决方案,提出了一种用于识别目标系统动力学模型未知组件的反向传播(BP)神经网络。为训练这种BP神经网络,使用可利用实验输入输出数据的改进的Levenberg-Marquardt算法进行训练本文介绍了整个动力学系统的集合。 BP神经网络和改进的Levenberg-Marquardt算法的验证分别通过正弦输出逼近,二阶系统参数估计和并行操纵器的摩擦模型估计来完成,它们代表了该方法的三个不同应用方面。

著录项

  • 作者

    Li Ming;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号