首页> 外文OA文献 >Bias Temperature Instability Effects in Devices with Fully-Silicided Gate Stacks, Strained-Si and Multiple-Gate Architectures
【2h】

Bias Temperature Instability Effects in Devices with Fully-Silicided Gate Stacks, Strained-Si and Multiple-Gate Architectures

机译:具有全硅化栅叠层,应变硅和多栅极架构的器件中的偏置温度不稳定性影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

ContentsChapter I: Introduction23I.1. CMOS Device Scaling23I.2. Objectives of the thesis29I.3. Structure of the thesis30Chapter II: State-of-the-Art Experimental Techniques30Chapter III: Reliability of Devices with Fully Silicided Gate Stacks30Chapter IV: Reliability of Strained-Si Devices30Chapter V: Reliability of Devices with Multiple-Gate Architectures31Chapter VI: Conclusions and Future Work31Bibliography32Chapter II: State-of-the-Art Experimental Techniques37II.1 Introduction37II. 2. Bias Temperature Instability37II.2.1. NBTI models38II.2.1.1. Reaction–Diffusion (R–D) model38II.2.1.2. Disorder-Controlled Kinetics model39II.2.2. Activation energy and time dependence41II.2.3. Interface traps and oxide charges43II.2.4. NBTI recovery46II.2.5. Nitrogen and fluorine47II.2.6. Wafer orientation48II.2.7. BTI measurement set-up48II. 3. Complementary Electrical Characterization Techniques50II.3.1. The conventional Charge Pumping (CP)50II.3.2. Conventional frequency sweep52II.3.3. Variable Tcharge-Tdischarge-Charge Pumping: VT2CP52II.3.4. Stress-Induced Leakage Current (SILC)55II.3.5. Low-frequency Noise58II.3.5.1 McWhorter's (DN) Surface Modulation Noise Mechanism60II.3.5.2. Hooge's (Dm) Mobility Fluctuation Mechanism61II.3.6. Time Dependent Dielectric Breakdown (TDDB)62II.3.6.1. Constant current stress (CCS)63II.3.6.2. Constant voltage stress (CVS)63II.3.6.3. TDDB analysis: the Weibull distribution64II. 4. Conclusions67Bibliography68Chapter III: Reliability of Devices with Fully Silicided Gate Stacks77III.1. Introduction77III.2. FUSI Process Flow79III.2.1. Ni silicide phase formation and effective work function79III.2.2. Scalability of Ni FUSI gate processes and device implementation82III.2.3. Dual work function phase controlled Ni FUSI CMOSintegration scheme86III.2.4. Summary89III. 3. Reliability Studies90III.3.1. Motivation90III.3.2.Device Processing Details and Experimental Techniques90III.3.3. Experimental Results91III.3.3.1. Effect of Gate Electrode on NBTI91III.3.3.2. Effect o f Back-End-of-Line Thermal Budget on BTI96III.3.3.3.Effects of Nitridation Conditions on BTI99III.3.3.4. Observations on the scalability of the BTI behaviour in sub-1nm EOT dielectrics109III. 4. Conclusions111Bibliography113Chapter IV: Reliability of Strained-Si Devices119IV. 1. Introduction119IV. 2. Transport Enhancement121IV.2.1. Electron mobility121IV.2.2. Hole mobility122IV.2.3. Piezoresistance coefficients123IV.2.4. Dangling bonds126IV. 3. Strain introduction techniques127IV.3.1. Stress-strain relationship127IV.3.2. Global strain substrates127IV.3.3. SiGe and Si:C Source/Drain130IV.3.4. Contact-Etch Stop Layers (CESL)133IV.3.5. Stress Memorization Technique (SMT)136IV. 4. Reliability Studies137IV.4.1. Motivation137IV.4.2. Device Processing Details and Experimental Techniques138IV.4.3. Experimental Results140IV.4.3.1. NBTI Characterization140IV.4.3.2. Charge pumping and noise measurements145IV.4.3.3. Impact of strain on carrier mobility in the vertical direction148IV.4.3.4. Electron Spin Resonance (ESR) measurements150IV.4.3.5. Discussion151IV. 5. Conclusions153Bibliography154Chapter V: Reliability of Devices with Multiple-Gate Architectures163V.1. Introduction163V.2. Types of Multiple-Gate Devices164V.2.1. Planar Double-Gate devices165V.2.2. Tri-Gate devices165V.2.3. Vertical Double-Gate devices165V.2.4. W-Gate devices165V.2.5. Gate-All-Around (GAA) 165V.2.6. P-Gate devices166V.2.7. Summary167V.3. Reliability Studies168V.3.1. Motivation168V.3.2. Device Processing Details and Experimental Techniques169V.3.2.1. Devices used in Section V.3.3.1:(Effects of Corner Rounding on TDDB)169V.3.2.2. Devices used in Section V.3.3.2:(Effects of Fluorine Passivation on BTI)169V.3.2.3. Devices used in Section V.3.3.3: (Effects of Nitridation Techniques on BTI)170V.3.3. Experimental Results171V.3.3.1. Effects of Corner Rounding on TDDB171Sub-Section V.3.3.1.A. Devices without corner rounding173Sub-Section V.3.3.1.B. Devices with corner rounding177V.3.3.2. Effects of Fluorine Passivation on BTI180V.3.3.3. Effects of Nitridation Techniques on BTI189V.4. Conclusions195Bibliography196Chapter VI: Summary, Conclusions and Future Work203VI.1. Summary203VI.2. Main conclusions203VI.2.1. Reliability of Devices with Fully Silicided Gate Stacks203VI.2.2. Reliability of Strained-Si Devices205VI.2.3. Reliability of Devices with Multiple-Gate Architectures206VI.3. Future work208VI.3.1. Reliability of Devices with Fully Silicided Gate Stacks208VI.3.2. Reliability of Strained-Si Devices208VI.3.3. Reliability of Devices with Multiple-Gate Architectures208Curriculum Vitae209
机译:目录第一章导言23I.1。 CMOS器件缩放比例23I.2。论文的目标29I.3。论文的结构30第II章:最新的实验技术30第III章:具有完全硅化栅堆叠的器件的可靠性30第IV章:应变硅器件的可靠性30第V章:具有多门架构的器件的可靠性31第VI章:结论和未来工作31参考书目32第二章:最先进的实验技术37II.1简介37II。 2.偏置温度不稳定性37II.2.1。 NBTI模型38II.2.1.1。反应扩散(RD)模型38II.2.1.2。失序控制动力学模型39II.2.2。激活能量和时间依赖性41II.2.3。界面陷阱和氧化物电荷43II.2.4。 NBTI恢复46II.2.5。氮和氟47II.2.6。晶片取向48II.2.7。 BTI测量设置48II。 3.互补的电气表征技术50II.3.1。常规电荷泵(CP)50II.3.2。常规扫频52II.3.3。可变的Tcharge-Tdischarge-Charge抽气:VT2CP 52II.3.4。应力感应泄漏电流(SILC)55II.3.5。低频噪声58II.3.5.1.McWhorter(DN)表面调制噪声机制60II.3.5.2。 Hooge(Dm)流动性波动机制61II.3.6。随时间变化的介电击穿(TDDB)62II.3.6.1。恒流应力(CCS)63II.3.6.2。恒压应力(CVS)63II.3.6.3。 TDDB分析:Weibull分布64II。 4.结论67参考书目68第III章:具有完全硅化的栅极堆叠77III.1的设备的可靠性。引言77III.2。 FUSI流程79III.2.1。硅化镍相的形成和有效功函数79III.2.2。 Ni FUSI栅极工艺的可扩展性和器件实现82III.2.3。双功函数相控Ni FUSI CMOS集成方案86III.2.4。总结89III。 3.可靠性研究90III.3.1。动机90III.3.2。设备处理细节和实验技术90III.3.3。实验结果91III.3.3.1。栅电极对NBTI 91III.3.2.3的影响。后端热收支对BTI 96III.3.3.3的影响氮化条件对BTI 99III.3.3.4的影响在1纳米以下EOT电介质109III中BTI行为可扩展性的观察。 4.结论111参考书目113第IV章:应变硅器件的可靠性119IV。 1.引言119IV。 2.加强运输121IV.2.1。电子迁移率121IV.2.2。空穴迁移率122IV.2.3。压阻系数123IV.2.4。悬挂键126IV。 3.应变引入技术127IV.3.1。应力-应变关系127IV.3.2。整体应变底物127IV.3.3。 SiGe和Si:C源/漏130IV.3.4。接触蚀刻停止层(CESL)133IV.3.5。压力记忆技术(SMT)136IV。 4.可靠性研究137IV.4.1。动机137IV.4.2。器件处理细节和实验技术138IV.4.3。实验结果140IV.4.3.1。 NBTI表征140IV.4.3.2。电荷泵和噪声测量145IV.4.3.3。应变对垂直方向上的载流子迁移率的影响148IV.4.3.4。电子自旋共振(ESR)测量150IV.4.3.5。讨论151IV。 5.结论153参考书目154第V章:具有多门架构163V.1的设备的可靠性。简介163V.2。多门设备的类型164V.2.1。平面双门设备165V.2.2。三门设备165V.2.3。垂直双门设备165V.2.4。 W-Gate设备165V.2.5。全方位门(GAA)165V.2.6。 P-Gate设备166V.2.7。摘要167V.3。可靠性研究168V.3.1。动机168V.3.2。器件处理细节和实验技术169V.3.2.1。第V.3.3.1节中使用的设备:(角取整对TDDB的影响)169V.3.2.2。 V.3.3.2节中使用的设备:(氟钝化对BTI的影响)169V.3.2.3。 V.3.3.3节中使用的设备:(氮化技术对BTI的影响)170V.3.3。实验结果171V.3.3.1。圆角取整对TDDB 171第V.3.3.1.A节的影响。不带圆角的设备173子条款V.3.3.1.B。带圆角倒角的设备177V.3.2.3。氟钝化对BTI 180V.3.3.3的影响。氮化技术对BTI 189V的影响4。结论195参考书目196第VI章:总结,结论与未来工作203VI.1。概要203VI.2。主要结论203VI.2.1。具有完全硅化的栅极堆叠的器件的可靠性203VI.2.2。应变硅器件的可靠性205VI.2.3。具有多门架构206VI.3的设备的可靠性未来工作208VI.3.1。具有完全硅化的栅极堆叠的器件的可靠性208VI.3.2。应变硅器件的可靠性208VI.3.3。具有多门架构的设备的可靠性208课程209

著录项

  • 作者

    Shickova Adelina;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 nl
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号