首页> 外文OA文献 >Process development of the device using in-house plate-to-plate tool with nanoimprint lithography technique for biochip application
【2h】

Process development of the device using in-house plate-to-plate tool with nanoimprint lithography technique for biochip application

机译:使用内部板对板工具和纳米压印光刻技术进行生物芯片应用的设备工艺开发

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Biochip is a promising device with capabilities of performing sorting, trapping and screening a large number of biological samples in a short time. Fabrication of biochip pattern process leads to an opening study towards the development of a working biochip. The traditional photolithography process have a limitation in achieving high throughput for biochip pattern fabrication. In this research, the fabrication process of biochip pattern was developed and the imprint parameter for biochip pattern using an in-house assembled plate-to-plate tool was investigated. The biochip patterns are prepared from existing projection lithography to create the mold. Using soft lithography technique, the biochip pattern was replicated invertly in the PDMS mold. The PDMS mold and in-house plate-to-plate fulfilled the requirement for UV-NIL to imprint biochip patterns on a flexible substrate. Dimension error difference (DED) is the difference between the original design dimensions to fabricated design dimensions. DED was characterized and investigated for precise pattern transfer. UV exposure of 140 W was able to produce the satisfied imprint pattern in biochip pattern mold fabrication. However, higher UV energy caused overexposure in the resist, resulting wider width and bridging. Besides that, crack regions were found when post bake exposure parameters are not properly optimized. The DED between biochip pattern mold and PDMS mold are less compared to biochip pattern mold fabrication in the photolithography process. Critical dimension in the biochip pattern was maintained in the imprint process. However, the higher imprint force will cause an overflow of the resist on the substrate, resulting unsatisfied pattern structure. The proposed parameters for imprinting biochip patterns using in-house plate-to-plate tool are 80 N range and 20 seconds of UV exposure.
机译:生物芯片是一种有前途的设备,具有在短时间内进行大量生物样品的分选,捕获和筛选的功能。生物芯片图案工艺的制造导致了对开发有效的生物芯片的开端研究。传统的光刻工艺在实现生物芯片图案制造的高产量方面有局限性。在这项研究中,开发了生物芯片图案的制造工艺,并研究了使用内部组装的板对板工具对生物芯片图案的压印参数。从现有的投影光刻技术制备生物芯片图案以创建模具。使用软光刻技术,将生物芯片图案反向复制到PDMS模具中。 PDMS模具和内部板对板满足了UV-NIL将生物芯片图案压印在柔性基板上的要求。尺寸误差差(DED)是原始设计尺寸与制造设计尺寸之间的差。对DED进行了表征并对其进行了研究,以进行精确的图案转印。 140 W的紫外线照射能够在生物芯片图案模具制造中产生令人满意的压印图案。但是,较高的UV能量会导致抗蚀剂过度曝光,从而导致较宽的宽度和桥接现象。除此之外,当烘烤后的曝光参数未适当优化时,会发现裂纹区域。与光刻工艺中的生物芯片图案模具制造相比,生物芯片图案模具和PDMS模具之间的DED更少。在压印过程中维持了生物芯片图案的关键尺寸。但是,较高的压印力将导致抗蚀剂在基板上溢出,从而导致不满意的图案结构。使用内部板对板工具压印生物芯片图案的建议参数为80 N范围和20秒的紫外线照射时间。

著录项

  • 作者

    Beh Khi Khim;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号