首页> 外文OA文献 >Dynamics and control of robotic aircraft with articulated wings
【2h】

Dynamics and control of robotic aircraft with articulated wings

机译:具有铰接翼的机器人飞机的动力学和控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

There is a considerable interest in developing robotic aircraft, inspired by birds, for a variety ofmissions covering reconnaissance and surveillance. Flapping wing aircraft concepts have been putforth in light of the efficiency of flapping flight at small scales. These aircraft are naturally equipped with the ability to rotate their wings about the root, a form of wing articulation. This thesis coverssome problems concerning the performance, stability and control of robotic aircraft with articulated wings in gliding flight. Speci cally, we are interested in aircraft without a vertical tail, which would then use wing articulation for longitudinal as well as lateral-directional control. Although the dynamics and control of articulated wing aircraft share several common features with conventional fi xed wing aircraft, the presence of wing articulation presents several unique benefi ts as well as limitations from the perspective of performance and control. One of the objectives of this thesis is to understand these features using a combination of theoretical and numerical tools.The aircraft concept envisioned in this thesis uses the wing dihedral angles for longitudinaland lateral-directional control. Aircraft with flexible articulated wings are also investigated. Wederive a complete nonlinear model of the flight dynamics incorporating dynamic CG location and the changing moment of inertia. We show that symmetric dihedral con guration, along with aconventional horizontal tail, can be used to control flight speed and flight path angle independentlyof each other. This characteristic is very useful for initiating an efficient perching maneuver.It is shown that wing dihedral angles alone can e ffectively regulate sideslip during rapid turns and generate a wide range of equilibrium turn rates while maintaining a constant flight speed and regulating sideslip. We compute the turning performance limitations that arise due to the use of wing dihedral for yaw control, and compare the steady state performance of rigid and flexible winged aircraft. We present an intuitive but very useful notion, called the e ffective dihedral, which allows us to extend some of the stability and performance results derived for rigid aircraft to flexible aircraft. In the process, we identify the extent of flexibility needed to induce substantialperformance bene fits, and conversely the extent to which results derived for rigid aircraft apply to a flexible aircraft. We demonstrate, interestingly enough, that wing flexibility actually causes a deterioration in the maximum achievable turn rate when the sideslip is regulated.We also present experimental results which help demonstrate the capability of wing dihedral forcontrol and for executing maneuvers such as slow, rapid descent and perching. Open loop as well as closed loop experiments are performed to demonstrate (a) the e ffectiveness of symmetric dihedral for flight path angle control, (b) yaw control using asymmetric dihedral, and (c) the elements of perching.Using a simple order of magnitude analysis, we derive conditions under which the wing isstructurally statically stable, as well as conditions under which there exists time scale separationbetween the bending and twisting dynamics. We show that the time scale separation depends on the geometry of the wing cross section, the Poisson's ratio of the wing material, the flightspeed and the aspect ratio of the wing. We design independent control laws for bending andtwisting. A key contribution of this thesis is the formulation of a partial diff erential equation (PDE) boundary control problem for wing deformation. PDE-backstepping is used to derive tracking andexponentially stabilizing boundary control laws for wing twist which ensure that a weighted integralof the wing twist (net lift or the rolling moment) tracks the desired time-varying reference input.We show that a control law which only ensures tracking of a weighted integral improves the stability margin of the twisting dynamics sixteen fold. A tracking control law is derived for the wing tip displacement which uses motion planning and a novel two-stage perturbation observer. This work on PDE-based control of wing deformation allows for the use of highly flexible wings on MAVs.Put together, the thesis provides a comprehensive understanding of the flight dynamics of arobotic aircraft equipped with articulated wings, and provides a set of control laws for performingagile maneuvers and for honing the bene fits of using highly flexible wings.
机译:受到鸟类启发的机器人飞行器的兴趣很大,涉及侦察和监视的各种任务。考虑到小规模扑翼飞行的效率,扑翼飞机概念已经被提出。这些飞机自然具备围绕根部旋转机翼的能力,这是机翼铰接的一种形式。本文涉及滑行飞行中带有铰接机翼的机器人飞机的性能,稳定性和控制方面的一些问题。特别是,我们对没有垂直尾翼的飞机感兴趣,然后该飞机将使用机翼铰接进行纵向和横向控制。尽管铰接式翼型飞机的动力和控制与常规固定翼式飞机有几个共同的特点,但从性能和控制的角度来看,机翼铰接的存在提出了几个独特的优点和局限性。本文的目的之一是通过理论和数值工具的结合来理解这些特征。本文所设想的飞机概念使用机翼二面角进行纵向和横向控制。还研究了带有挠性铰接机翼的飞机。推导了包含动态CG位置和变化的惯性矩的飞行动力学的完整非线性模型。我们表明,对称的二面角配置以及常规的水平尾翼可用于彼此独立地控制飞行速度和飞行路径角度。此特性对于启动有效的栖息动作非常有用。它表明,机翼二面角可以在快速转弯时有效调节侧滑并产生广泛的平衡转弯速率,同时保持恒定的飞行速度并调节侧滑。我们计算了由于使用机翼二面体进行偏航控制而产生的转弯性能限制,并比较了刚性和柔性机翼飞机的稳态性能。我们提出了一个直观但非常有用的概念,称为有效二面体,它使我们能够将从刚性飞机获得的一些稳定性和性能结果扩展到柔性飞机。在此过程中,我们确定了引起实质性的性能适应所需要的灵活性程度,反之,刚性飞机得出的结果适用于柔性飞机的程度。有趣的是,我们证明了当调节侧滑时,机翼的柔韧性实际上会导致最大可达到的转弯速度变差。我们还提供了实验结果,这些结果有助于证明机翼二面体的控制能力以及执行动作的能力,例如缓慢,快速下降和栖息。进行开环和闭环实验以证明(a)对称二面体对飞行路径角控制的有效性;(b)使用非对称二面体的偏航控制;以及(c)栖息的元素。进行幅度分析时,我们得出机翼在结构上是静态稳定的条件,以及在弯曲和扭曲动力学之间存在时间刻度分离的条件。我们证明了时间尺度的分离取决于机翼横截面的几何形状,机翼材料的泊松比,机翼的飞行速度和纵横比。我们为弯曲和扭曲设计独立的控制律。本文的主要贡献是针对机翼变形的偏微分方程(PDE)边界控制问题的提出。 PDE反推用于导出机翼扭曲的跟踪和指数稳定边界控制定律,以确保机翼扭曲的加权积分(净升力或侧倾力矩)跟踪所需的时变参考输入。确保跟踪加权积分将扭转动力学的稳定性裕量提高16倍。推导了翼尖位移的跟踪控制律,该律使用运动计划和新颖的两阶段扰动观测器。这项基于PDE的机翼变形控制工作允许在MAV上使用高度灵活的机翼。综上所述,本论文提供了对配备铰接式机翼的飞行器的飞行动力学的全面理解,并提供了一套控制律。执行灵活的演习并磨练使用高度灵活的机翼的优点。

著录项

  • 作者

    Paranjape Aditya;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号