...
首页> 外文期刊>Fortschritte der Physik >Design of active region for GaAsP/AlGaAs tensile strain quantum well laser diodes near 800 nm wavelength
【24h】

Design of active region for GaAsP/AlGaAs tensile strain quantum well laser diodes near 800 nm wavelength

机译:GaASP / Algaas拉伸应变量子孔激光二极管接近800nm波长的有源区设计

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

As an active region, the tensile strain GaAs1-xPx quantum well plays an important role in the high power semiconductor laser diode with a wavelength of about 800 nm. Accompanied with the improved stability due to the Al-free active region, the GaAs1-xPx quantum well laser also shows a high level of catastrophic optical mirror damage because of the non-absorbing window at the facet, which is formed automatically by the relaxation of the tensile strain GaAs1-xPx material. On the other side, the GaAs1-xPx quantum well laser can provide a transverse magnetic (TM) polarized light source which is important for many solid state laser systems. However, the energy band structure of the tensile strain GaAs1-xPx quantum well is more complicated than that of the compressed or lattice matched quantum well. Although the light hole band is on the top of the heavy hole band for the bulk tensile strain GaAs1-xPx material, the situation may be different from the tensile strain GaAs1-xPx quantum well, in which the first light hole subband lh(1) can be either on the top of the first heavy hole subband hh(1) or reversed, that will cause the laser to generate either TM or transverse electric (TE) polarized light according to the well structure. So it is meaningful to optimize the tensile strain GaAs1-xPx quantum well structure based on the analysis of the energy band structure. Firstly, according to the 6 x 6 Luttinger-Kohn theory, the energy band structure of the tensile strain GaAs1-xPx quantum well is calculated by the finite difference method. The relationship between the interband transition energy and the well structure parameters is established. It is found that the well composition x and the well width should increase simultaneously, in order to fix the first subband transition wavelength at about 800 nm. Special attention is paid to the 808 nm quantum well, the valence structures of different well widths are calculated, the detailed analysis of the envelope function shows that the top valence subband is lh(1) for wider well width, while it is changed to hh(1) for narrower well width. Meanwhile, both the TE and the TM momentum matrix element are calculated as a function of the transverse wave vector for the subband transition from c(1) to lh(1), lh(2), hh(1) and hh(2), respectively. Further, the threshold optical gains of different well widths are simulated for 808 nm laser diode with the tensile strain GaAs1-xPx quantum well as an active region, the wider well width benefits the TM mode, while the narrower one is favor of TE mode. Finally, according to the threshold carrier density, the relationship between the threshold current density and the well width is analyzed for 808 nm laser diode by considering both the spontaneous and the Auger recombination, an optimum combination of the well width and the well composition exists. For wider well width, the threshold current density will be higher because of the high energy subband carrier filling effect. For narrower well width, the decrease of the optical confinement factor will lead to the increase of threshold current density.
机译:作为有源区,拉伸应变GaAs1-XPx量子阱在高功率半导体激光二极管中起重要作用,波长为约800nm。伴随着由于vAl活性区域而改善的稳定性,GaAs1-xpx量子孔激光器也显示出高水平的灾难性光学镜损伤,因为小平面上的非吸收窗口,通过松弛自动形成拉伸应变GaAs1-Xpx材料。另一方面,GaAs1-XPX量子孔激光器可以提供横向磁性(TM)偏振光源,这对于许多固态激光系统很重要。然而,拉伸应变GaAs1-Xpx量子阱的能带结构比压缩或栅格匹配量阱更复杂。尽管光孔带位于块状拉伸应变GaAs1-XPX材料的重型孔条的顶部,但情况可能与拉伸应变GaAs1-xpx量子不同,其中第一灯孔子带LH(1)可以在第一重孔子带Hh(1)的顶部或反转,这将导致激光根据井结构产生TM或横向电气(TE)偏振光。因此,通过基于能带结构的分析来优化拉伸应变GaAs1-XPX量子阱结构是有意义的。首先,根据6×6 Luttinger-Kohn理论,通过有限差分法计算拉伸应变GaAs1-XPx量子阱的能带结构。建立了基带转换能量与井结构参数之间的关系。发现井组合物x和孔宽度应同时增加,以便将第一子带转换波长固定在约800nm。特别注意808 nm量子阱,计算不同井宽的价结构,对包络功能的详细分析表明,顶部价底带是更宽的宽度的LH(1),而变为HH (1)用于较窄井宽。同时,TE和TM动量矩阵元件都被计算为从C(1)到LH(1),LH(2),HH(1)和HH(2)子带转换的横向波向量的函数, 分别。此外,将不同阱宽度的阈值光学增益模拟了808nm激光二极管,与拉伸应变GaAs1-xpx量子粘量为有源区,更宽的井宽有益于TM模式,而较窄的宽度是对TE模式的青睐。最后,根据阈值载流子密度,通过考虑自发性和螺旋钻重组,孔宽度和井组合物的最佳组合来分析阈值电流密度和孔宽度之间的关系。对于更宽的宽度,由于高能子带载体填充效果,阈值电流密度将更高。对于较窄的宽度较窄,光学限制因子的降低将导致阈值电流密度的增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号