首页> 外文期刊>Journal of Hydrology >Adjusting for small-sample non-normality of design event estimators under a generalized Pareto distribution
【24h】

Adjusting for small-sample non-normality of design event estimators under a generalized Pareto distribution

机译:在广义Pareto分布下调整设计事件估计量的小样本非正态性

获取原文
获取原文并翻译 | 示例

摘要

The generalized Pareto distribution (GPD) is a widely used frequency model for fitting extremes in hydrology, especially to fit exceedances over a threshold in the peaks-over-threshold (POT) modeling of floods or other extreme hydrological phenomena. A key goal in fitting frequency distributions to data is to allow the estimation of distribution quantiles, which in hydrology are often used as "design events". The maximum likelihood (ML) method is a recommended method for fitting the GPD to data. To provide a measure of the statistical error involved in the estimation of design events, confidence intervals for quantiles (CIQs) have to be calculated. Hydrologists have traditionally used large-sample theory to construct such CIQs, but it is shown in the present study that this leads to inaccurate results for quantiles in the right-tail of a GPD. An improvement is therefore proposed for these classically obtained CIQs under a GPD model fitted by ML. The conventional and proposed approaches are compared through Monte Carlo (MC) simulation, and the resulting recommendations are put to use in a hydrological application. (C) 2015 Elsevier B.V. All rights reserved.
机译:广义帕累托分布(GPD)是广泛用于拟合水文学中的极端情况的频率模型,尤其是用于拟合洪水或其他极端水文现象的峰顶(POT)模型中超过阈值的超出部分。使频率分布适合数据的一个关键目标是允许估计分位数,在水文学中,分位数通常被用作“设计事件”。建议使用最大似然(ML)方法将GPD拟合到数据。为了提供对设计事件估计中涉及的统计误差的度量,必须计算分位数(CIQ)的置信区间。水文学家传统上使用大样本理论来构建这样的CIQ,但是本研究表明,这导致了GPD右尾分位数的结果不准确。因此,提出了对这些经典获得的CIQ(在ML拟合的GPD模型下)的改进。通过蒙特卡洛(MC)模拟比较了传统方法和建议方法,并将得出的建议用于水文应用。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号