首页> 外文OA文献 >Small-sample properties of estimators in an ARCH(1) and GARCH(1,1) model with a generalized error distribution: A robustness study
【2h】

Small-sample properties of estimators in an ARCH(1) and GARCH(1,1) model with a generalized error distribution: A robustness study

机译:具有广义误差分布的aRCH(1)和GaRCH(1,1)模型中估计量的小样本性质:鲁棒性研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

GARCH Models have become a workhouse in volatility forecasting of financial and monetary market time series. In this article, we assess the small sample properties in estimation and the performance in volatility forecasting of four competing distribution free methods, including quasi-maximum likelihood and three regression based methods. The study is carried out by means of Monte Carlo simulations. To guarantee an utmost realistic framework, simulated time series are generated from a mixture of two symmetric generalized error distributions. This data generating process allow to reproduce the stylized facts of financial time series, in particular, peakedness and skewness. The results of the study suggest that regression based methods can be an asset in volatility forecasting, since model parameters are subject to structural change over time and the efficiency of the quasi- maximum likelihood method is confined to large sample sizes. Furthermore, the good performance of forecasts based on the historical volatility supports to use the variance targeting method for volatility forecasting.
机译:GARCH模型已成为预测金融和货币市场时间序列波动性的工具。在本文中,我们评估了四种竞争性无分布方法(包括拟最大似然法和三种基于回归的方法)的估计中的小样本属性以及波动率预测的性能。该研究是通过蒙特卡洛模拟进行的。为了保证最真实的框架,从两个对称的广义误差分布的混合中生成了模拟时间序列。该数据生成过程允许重现金融时间序列的风格化事实,尤其是峰度和偏度。研究结果表明,基于回归的方法可能是波动率预测中的一项资产,因为模型参数会随着时间而发生结构变化,而拟最大似然方法的效率仅限于大样本量。此外,基于历史波动率的预测的良好性能支持使用方差目标法进行波动率预测。

著录项

  • 作者

    Pauly Ralf; Kosater Peter;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号