首页> 外文期刊>Journal of statistical computation and simulation >A robust closed-form estimator for the GARCH(1,1) model
【24h】

A robust closed-form estimator for the GARCH(1,1) model

机译:用于GARCH(1,1)模型的鲁棒的封闭形式估计器

获取原文
获取原文并翻译 | 示例

摘要

In this paper we extend the closed-form estimator for the generalized autoregressive conditional heteroscedastic (GARCH(1,1)) proposed by Kristensen and Linton [A closed-form estimator for the GARCH(1,1) model. Econom Theory. 2006;22:323-337] to deal with additive outliers. It has the advantage that is per se more robust that the maximum likelihood estimator (ML) often used to estimate this model, it is easy to implement and does not require the use of any numerical optimization procedure. The robustification of the closed-form estimator is done by replacing the sample autocorrelations by a robust estimator of these correlations and by estimating the volatility using robust filters. The performance of our proposal in estimating the parameters and the volatility of the GARCH(1,1) model is compared with the proposals existing in the literature via intensive Monte Carlo experiments and the results of these experiments show that our proposal outperforms the ML and quasi-maximum likelihood estimators-based procedures. Finally, we fit the robust closed-form estimator and the benchmarks to one series of financial returns and analyse their performances in estimating and forecasting the volatility and the value-at-risk.
机译:在本文中,我们扩展了Kristensen和Linton提出的广义自回归条件异方差(GARCH(1,1))的闭式估计[GARCH(1,1)模型的闭式估计。经济理论。 2006; 22:323-337]处理加性离群值。它的优点是本身更健壮,因为通常用于估计该模型的最大似然估计器(ML),易于实现且不需要使用任何数值优化程序。通过用这些相关性的鲁棒估计器替换样本自相关并使用鲁棒滤波器估计波动率,可以完成闭式估计器的鲁棒性。通过密集的蒙特卡洛实验,我们的建议在估计GARCH(1,1)模型的参数和波动性方面的性能与文献中的建议进行了比较,这些实验的结果表明我们的建议优于ML和准-基于最大似然估计的过程。最后,我们将健壮的封闭式估计器和基准与一系列财务收益进行拟合,并分析它们在估计和预测波动率和风险价值中的表现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号