首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Learning Category-Specific Deformable 3D Models for Object Reconstruction
【24h】

Learning Category-Specific Deformable 3D Models for Object Reconstruction

机译:学习用于类别重建的特定于类别的可变形3D模型

获取原文
获取原文并翻译 | 示例

摘要

We address the problem of fully automatic object localization and reconstruction from a single image. This is both a very challenging and very important problem which has, until recently, received limited attention due to difficulties in segmenting objects and predicting their poses. Here we leverage recent advances in learning convolutional networks for object detection and segmentation and introduce a complementary network for the task of camera viewpoint prediction. These predictors are very powerful, but still not perfect given the stringent requirements of shape reconstruction. Our main contribution is a new class of deformable 3D models that can be robustly fitted to images based on noisy pose and silhouette estimates computed upstream and that can be learned directly from 2D annotations available in object detection datasets. Our models capture top-down information about the main global modes of shape variation within a class providing a “low-frequency” shape. In order to capture fine instance-specific shape details, we fuse it with a high-frequency component recovered from shading cues. A comprehensive quantitative analysis and ablation study on the PASCAL 3D+ dataset validates the approach as we show fully automatic reconstructions on PASCAL VOC as well as large improvements on the task of viewpoint prediction.
机译:我们解决了从单个图像进行全自动对象定位和重建的问题。这既是一个非常具有挑战性又非常重要的问题,直到最近,由于分割对象和预测其姿势方面的困难,该问题一直受到关注。在这里,我们利用学习卷积网络的最新进展来进行对象检测和分割,并为摄像机视点预测的任务引入了一个补充网络。这些预测器功能非常强大,但鉴于形状重建的严格要求,仍然不够完善。我们的主要贡献是提供了一类新的可变形3D模型,该模型可以基于上游计算出的嘈杂姿态和轮廓估计值稳健地拟合到图像,并且可以直接从对象检测数据集中的2D注释中学习。我们的模型在提供“低频”形状的类中捕获有关形状变化的主要全局模式的自顶向下信息。为了捕获特定于实例的精细形状细节,我们将其与从阴影提示中恢复的高频分量融合在一起。对PASCAL 3D +数据集的全面定量分析和消融研究证明了该方法的有效性,因为我们显示了PASCAL VOC的全自动重建以及对视点预测任务的重大改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号