首页> 外文期刊>Ocean Engineering >Robust neural path-following control for underactuated ships with the DVS obstacles avoidance guidance
【24h】

Robust neural path-following control for underactuated ships with the DVS obstacles avoidance guidance

机译:具有DVS避障指导的欠驱动船舶的鲁棒神经路径跟随控制

获取原文
获取原文并翻译 | 示例

摘要

In this note, one focuses on the waypoints-based path-following control of underactuated surface ships with the mechanism of multi-static or slow time-varying obstacles avoidance. In the scheme, an improved dynamical virtual ship (DVS) principle is initially developed to programme the real-time attitude guidance for the underactuated ship in marine practice, providing a smooth transition of heading angle and velocity based on the principle of proximity. The scheduler is applied in the path-following and obstacles avoidance missions. Furthermore, to ensure the effectiveness of the obstacles avoidance manoeuvering, a practical robust neural control is proposed by fusion of neural networks and the robust neural damping technique. It requires less (or no) information of the system parameters and structure, and only four adaptive parameters require to be updated online. These designs would facilitate the implementation of the algorithm in the practical engineering. Considerable efforts are made to obtain the semi-global finite-time uniformly bounded (SGFTUB) stability by employing the Lyapunov theory. The comparative experiments have been presented to verify the effectiveness of the proposed scheme.
机译:在本说明中,我们重点介绍了采用多静态或时变缓慢的避障机制对欠驱动水面舰艇进行基于航点的路径跟踪控制。在该方案中,最初开发了一种改进的动态虚拟船(DVS)原理,以对海洋实践中动力不足的船的实时姿态导航进行编程,并基于接近原理提供了航向角和速度的平滑过渡。调度程序应用于路径跟踪和避障任务。此外,为了确保避障机动的有效性,通过融合神经网络和鲁棒神经阻尼技术,提出了一种实用的鲁棒神经控制。它只需要很少(或不需要)系统参数和结构信息,并且仅需要在线更新四个自适应参数。这些设计将有助于在实际工程中实施该算法。通过运用李雅普诺夫理论,已经做出了相当大的努力来获得半全局有限时间均匀有界(SGFTUB)稳定性。已经进行了比较实验以验证所提出的方案的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号