首页> 外文期刊>Journal of Computational Methods in Sciences and Engineering >A combined parallel genetic algorithm and support vector machine model for breast cancer detection
【24h】

A combined parallel genetic algorithm and support vector machine model for breast cancer detection

机译:联合并行遗传算法和支持向量机模型的乳腺癌检测

获取原文
获取原文并翻译 | 示例

摘要

The serial genetic algorithms (SGAs) have been widely applied in improving support vector machine (SVM) performance (e.g., classification accuracy), and these hybrid SGA-SVM methods show good capability to detect breast cancer. However, there remain two great challenges: (1) the improvements tend to be at the great cost of time-consuming training; and (2) the SGA-based search may risk the premature convergence to local optima and thereby decrease the quality of the solutions found. The study aimed to investigate the use of parallel genetic algorithms (PGAs) in improving SVM performance, and build an efficient and accurate classifier of detecting breast cancer. A coarse-grained parallel genetic algorithm (CGPGA) was used to select a feature subset and optimize the parameters of SVM simultaneously. This approach (CGPGA-SVM) was then applied to a well characterized breast cancer dataset, consisting of 699 samples (458 benign and 241 malignant samples). In addition, the proposed CGPGA-SVM classier was compared with a range of SVM-based classifiers to understand its performance improvements. Compared with the SGA-SVM classifier, the training time of the CGPGA-SVM classier decreased by 75.77% on a commonly used 4-core CPU; moreover, the classification accuracy and sensitivity of the CGPGA-SVM classifier increased by 0.43% and 1.25%, respectively.
机译:串行遗传算法(SGA)已广泛用于提高支持向量机(SVM)的性能(例如分类精度),并且这些混合SGA-SVM方法显示出良好的检测乳腺癌的能力。但是,仍然存在两个巨大的挑战:(1)改进往往以耗时的培训为代价; (2)基于SGA的搜索可能会过早收敛到局部最优值,从而降低找到的解决方案的质量。这项研究旨在调查并行遗传算法(PGA)在改善SVM性能方面的用途,并建立一种有效且准确的乳腺癌分类器。使用粗粒度并行遗传算法(CGPGA)选择特征子集并同时优化支持向量机的参数。然后将该方法(CGPGA-SVM)应用于特征明确的乳腺癌数据集,该数据集由699个样本(458个良性和241个恶性样本)组成。此外,将拟议的CGPGA-SVM分类器与一系列基于SVM的分类器进行了比较,以了解其性能改进。与SGA-SVM分类器相比,在常用的4核CPU上CGPGA-SVM分类器的训练时间减少了75.77%;此外,CGPGA-SVM分类器的分类精度和灵敏度分别提高了0.43%和1.25%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号