首页> 外文期刊>Computerized Medical Imaging and Graphics: The Official Jounal of the Computerized Medical Imaging Society >Combining support vector machine with genetic algorithm to classify ultrasound breast tumor images
【24h】

Combining support vector machine with genetic algorithm to classify ultrasound breast tumor images

机译:结合支持向量机与遗传算法对超声乳腺肿瘤图像进行分类

获取原文
获取原文并翻译 | 示例

摘要

To promote the classification accuracy and decrease the time of extracting features and finding (near) optimal classification model of an ultrasound breast tumor image computer-aided diagnosis system, we propose an approach which simultaneously combines feature selection and parameter setting in this study. In our approach ultrasound breast tumors were segmented automatically by a level set method. The auto-covariance texture features and morphologic features were first extracted following the use of a genetic algorithm to detect significant features and determine the near-optimal parameters for the support vector machine (SVM) to identify the tumor as benign or malignant. The proposed CAD system can differentiate benign from malignant breast tumors with high accuracy and short feature extraction time. According to the experimental results, the accuracy of the proposed CAD system for classifying breast tumors is 95.24% and the computing time of the proposed system for calculating features of all breast tumor images is only 8% of that of a system without feature selection. Furthermore, the time of finding (near) optimal classification model is significantly than that of grid search. It is therefore clinically useful in reducing the number of biopsies of benign lesions and offers a second reading to assist inexperienced physicians in avoiding misdiagnosis.
机译:为了提高分类的准确性并减少提取特征和寻找(接近)超声乳腺肿瘤图像计算机辅助诊断系统的最佳分类模型的时间,在本研究中,我们提出了一种将特征选择和参数设置同时进行的方法。在我们的方法中,超声乳腺肿瘤通过水平集方法自动分割。在使用遗传算法检测重要特征并确定支持向量机(SVM)的近最佳参数后,首先提取自协方差纹理特征和形态特征,以将肿瘤识别为良性或恶性。所提出的CAD系统能够以高准确性和短特征提取时间来区分良性和恶性乳腺肿瘤。根据实验结果,所提出的用于对乳腺肿瘤进行分类的CAD系统的准确性为95.24%,并且所提出的用于计算所有乳腺肿瘤图像的特征的系统的计算时间仅为没有特征选择的系统的8%。此外,发现(接近)最优分类模型的时间明显比网格搜索的时间长。因此,在减少良性病变的活检次数方面具有临床意义,并提供二读以帮助经验不足的医师避免误诊。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号