首页> 外文期刊>IEEE Transactions on Systems, Man, and Cybernetics >Model-Free H∞ Optimal Tracking Control of Constrained Nonlinear Systems via an Iterative Adaptive Learning Algorithm
【24h】

Model-Free H∞ Optimal Tracking Control of Constrained Nonlinear Systems via an Iterative Adaptive Learning Algorithm

机译:无模型H∞通过迭代自适应学习算法对受约束非线性系统的最佳跟踪控制

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an $H_{infty }$ optimal tracking controller for completely unknown discrete-time nonlinear systems with control constraints is obtained by using an iterative adaptive learning algorithm. An augmented system is established by integrating the tracking error system and the reference trajectory. As an identifier of the unknown systems, a neural network (NN) is introduced with asymptotic stability of the estimation error. An action–disturbance–critic NN structure is proposed to implement the iterative dual heuristic programming algorithm with convergence guarantee of the costate function and the control policy. Simulation results and comparisons are provided to illustrate the superior performance of the designed optimal tracking controller.
机译:在本文中,一个<内联公式XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> $ h _ { idty} $ 通过使用迭代自适应学习算法获得具有控制约束的完全未知的离散时间非线性系统的最佳跟踪控制器。通过集成跟踪误差系统和参考轨迹来建立增强系统。作为未知系统的标识符,通过估计误差的渐近稳定性引入神经网络(NN)。提出了一种动作干扰 - 评论家NN结构,用于实现具有成本函数和控制策略的迭代双启发式编程算法和控制策略。提供了仿真结果和比较,以说明设计的最佳跟踪控制器的卓越性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号